High-level Coordination Specification

Operational semantics for Kanor

Joseph A. Cottam Eric Holk
William E. Byrd

CREST*
Indiana University

{jcottam, eholk, webyrd}@indiana.edu

1. Introduction

Coordinating multiple computational processes is one of the largest
challenges of contemporary computing. It is found at all com-
putational scales: single-machines, clusters and clouds. Message
passing is a well-proven but complex means of coordinating pro-
cesses. For example, the MPI-3 draft standard describes four types
of process groups, seventeen collective communication patterns,
and notes on interactions between these and other MPI constructs.
This complexity is partially a result of MPI's reliance on pre-
defined communication patterns and imperative style. Kanor takes
a different approach: declaratively specifying communication pat-
terns. Kanor employs a small set of basic concepts (reductions, list-
comprehensions and filters) to compactly describe communication
and a special-purpose compiler to produce appropriate executable
code. This arrangement provides for (1) succinctness, (2) interop-
erability, (3) expressiveness and (4) performance. Expressing BSP-
style programs in MPI requires manipulation of low-level details.
Actual communication patterns are either forced into pre-set pat-
terns when using collectives [9], or made latent in either control
flow (with send and receive) [2] or data structures (with the pro-
posed topological collectives [10]). In contrast, Kanor expresses the
communication patterns in self-contained statements. It is flexible
enough to handle irregular communication patterns and succinct
enough to show regularity (Figure 1).

This abstract provides the evaluation rules for Kanor Comm
statements, describes optimizations make possible through the se-
mantics and argues for Kanor’s expressiveness. This complements
earlier work that focused on interoperability and performance [6].
Though the full semantics are not presented here, they have been
developed and reducers based on them have been implemented
in PLT Redex, the logic programming language miniKanren and
through a pattern matching library.

2. Syntax and Semantics

Kanor can be divided into two parts: a sequential language and
communicate statements. The sequential language provides the

* Center for Research in Extreme Scale Technologies

[Copyright notice will appear here once ’preprint’ option is removed.]

Kanor Semantics

Arun Chauhan

School of Informatics and Computing
Indiana University

achauhan@indiana.edu

Andrew Lumsdaine

CREST
Indiana University

lums@indiana.edu

(Comm ((lref A (+ i (* j block))) @ k
<<= (get B i) @ j)
(where (j (range ® WORLD))
(k (range ® WORLD))
(i (range 0 block))))

(Comm ((lref A (+ i (* j block))) @ root
Gather <<= (get B i) @ j)
(where (j (range ® WORLD))

(i (range 0 block))))

(Comm ((lref B i) @ j <<= (get A i) @ root)
Bcast (where (j (range ® WORLD))
(i (range ® (len A)))))

(Comm ((lref A i) @ j <<+ (get B i) @ k)
(where (j (range ® WORLD))
(k (range 0 (+ j 1))
(i (range 0 (len B)))))

All Gather

Scan

Figure 1. Selection of MPI 2.2 collectives expressed in Kanor.

statement = (Comm transfer where filter)

transfer = ((Aref var expr) @ expr commop expr @ expr)
where = (where clause™)

Sfilter = (filter predicate®)

clause == (var list_expr)

expr = Host language expression returning a single value
predicate = Host language expression returning a boolean
list_expr = Host language expression returning multiple values
commop z= Commutative and associative op or assignment

Figure 2. Kanor Comm-statement syntax.

ability to calculate and store values while communicate statements
provide the message contents and routing. The sequential language
is a subset of a host language, into which Kanor statements are
embedded. To support semantic reasoning, the full Kanor seman-
tics provide a sequential language with mathematical operations,
let-bindings for atomic values and a heap-like data store for arrays.
Preserving this division between the communicate statements and
the sequential langauge provides (1) clear restrictions on what can
occur inside of a communicate statement (2) simplifies semantic
rules and (3) provides a definition for the interface between the
host language and Kanor. As communicate statement evaluation is
the crux of Kanor evaluation, we focus on their evaluation.

Comm statements produce interprocess communication. Comm
statements have three major parts (Figure 2). The where and filter
determine the context for evaluating the transfer statement. Genera-
tor/filter results and transfer statements combine to form messages.
Figure 3 summarizes Comm statement parts and evaluation rules.

2012/11/24

receiver sender receiver sender all

all all

——— —— —_—— =
((lrefAj)@ i <<= (getBi)@ j) (wherei (range ®world))(j (range01i))) (filter (== 0 (% i 2)))
— L == =

—
—_———— ——
storage recetver r(’lluctlw? data sender
location rank operator item rank

transfer statement

where clause filter

Figure 3. Kanor syntactic elements and evaluation locations.

Evaluation of Comm statements progresses through six phases,
only one of which includes cross-process synchronization. The
first phases splits each Comm statement into a sending statement
(CommsS) and a receiving statement (CommR). In the most general
case, the CommS contains all of the parts of the original Comm
and the CommR has no arguments. Splitting into Comm enables
a number of optimizations and enables more work to be done in
parallel across processes. The where clauses of the CommS are
used to produce partial environments in the second phase. where
clauses are expanded using a ConcatMap-based list comprehension
technique [7] that results in a list of partial environments where
each partial environment has exactly one binding for each variable
in the where clause. Partial environments are selected for further
processing if the filter clause returns “true” when evaluated with it.

The third phase evaluates the sender rank for each partial envi-
ronment. Only those partial environments that produce the current
process as the sender are used in phase four. The fourth phase pro-
duces the actual messages to be sent. Messages are produces by
evaluating the data item and receiver rank expressions in the same
way that sender rank was evaluated. (This evaluation is delayed
until after sender ranks are evaluated to prevent errors in gener-
ating messages that will never be sent.) The storage location, re-
duction operation and data item are all combined to form a remote
statement to be executed on the receiver. The combination method
depends on the mathematical properties of the reduction operator
used, so the combination styles are limited. Each message is formed
from a triple that includes a partial environment with the corre-
sponding receiver and remote statement. The remote statement and
partial environment logically form a dynamically scoped closure,
which are executed on the receiving process. All free-variables not
bound in the partial environment are resolved in the context of the
execution (i.e., on the receiver).

Communication occurs in the fifth phase. When all processes
have finished create messages, they transfer their messages to the
queues of the receiving processes. Communication is complete
when no process has an undelivered message. Detecting that all
messages have been delivered can be achieved through a variety of
protocols [3]. CommR evaluation is the sixth phase, in which each
processes evaluates each received message.

3. Conclusions

The Kanor semantics provide a number of useful properties for
Kanor programs. Principally, they provide a clear basis for opti-
mizations. As noted, the MPI-2.2 collectives can be encoded in
Kanor. Therefore, when a collective is encoded, the Kanor com-
piler can identify it and substitute a call to an available MPI imple-
mentation. A significant difficulty is that the MPI-2.2 collectives
do not have unique encodings in Kanor. However, the full Kanor
semantics have been used to implement a Kanor reducer in a logic-
programming language which can be used to enumerate many en-
codings of the reductions and thereby improve the possibility that
any particular encoding will be known to the compiler.

Identifying and exploiting information known across processes
is also possible with the Kanor semantics. When the compiler deter-
mines that the where and filter clauses are based on values shared

Kanor Semantics

by both sender and receiver, the sender and receiver share corre-
sponding knowledge [4]. In such cases, the processes do not need
to wait to send until all processes are ready to send. The evalua-
tion of CommR is modified to determine and process the expected
messages. This eliminates global synchronization associated with
message sending, and related impacts of synchronization overhead
and process skew. Global knowledge can be similarly treated.

The full semantic rules also provide a foundation for ongoing
work. We are currently to working to delineate when Kanor is
deterministic, when it is deadlock free and its unique error con-
ditions. We are exploring automatic communication/computation
overlap and message coalescing and other shared-knowledge op-
timizations. Semantic extensions are being explored to expand re-
ductions beyond associative/commutative operators, safely overlap
multiple communicate blocks, and interface BSP with other parallel
programming models (such as GPGPU [5, 8] or task-stealing [1]).

Kanor is an effective tool for expressing communication pat-
terns. It enables direct expression of complex communication pat-
terns, including but not limited to those included as standard pat-
terns in MPI. Because of its well-defined semantics, automatic tools
for optimization at many different levels are possible.

References

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
SIGPLAN Not., 30(8):207-216, Aug. 1995. ISSN 0362-1340.

[2] S. Gorlatch. Send-receive considered harmful: Myths and realities of
message passing. ACM Trans. Program. Lang. Syst.,26(1):47-56, Jan.
2004. ISSN 0164-0925.

T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable communication
protocols for dynamic sparse data exchange. In Principles and Prac-
tice of Parallel Programming, pages 159-168, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-877-3.

T. Hoefler, J. Willcock, A. Chauhan, and A. Lumsdaine. The Case for
Collective Pattern Specification. In 1st ACM Workshop on Advances
in Message Passing (AMP’10), Jun. 2010.

E. Holk, W. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and A. Lums-
daine. Declarative parallel programming for GPUs. In Proceedings of
the International Conference on Parallel Computing (ParCo), Ghent,
Belgium, 09/2011 2011.

E. Holk, W. E. Byrd, J. Willcock, T. Hoefler, A. Chauhan, and
A. Lumsdaine. Kanor — A Declarative Language for Explicit Commu-
nication. In Thirteenth International Symposium on Practical Aspects
of Declarative Languages (PADL’11), Austin, Texas, Jan. 2011.

S. P. Jones and P. Wadler. Comprehensive comprehensions. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
Haskell "07, pages 61-72, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-674-5.

[8] Khronos OpenCL Working Group. The OpenCL Specification, version
1.1. September 2010.

[9]1 MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2.
September 2009.

[10] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3
(Draft). August 2012.

[3

—

[4

flnar

[5

=

[6

=

[7

—

2012/11/24

