
Visualizing the Turing Tarpit

Jason Hemann Eric Holk
Indiana University

{jhemann,eholk}@cs.indiana.edu

Abstract
Minimalist programming languages like Jot have limited in-
terest outside of the community of languages enthusiasts.
This is a shame, as the simplicity of these languages as-
cribes to them an inherent beauty and provides deep in-
sight into the nature of computation. We present a fun way
of visualizing the behavior of many Jot programs at once,
providing interesting images and also hinting at somewhat
non-obvious relationships between programs. In the same
way that research into fractals yielded new mathematical
insights, visualizations such as those presented here could
yield new insights into the structure and nature of compu-
tation.

Categories and Subject Descriptors F.4.1 [Mathemat-
ical Logic]: Lambda calculus and related systems; D.2.3
[Coding Tools and Techniques]: Pretty printers

General Terms language, visualization

Keywords Jot, reduction, tarpit, Iota

1. Introduction
A Turing tarpit is a programming language that is Turing
complete, but so bereft of features that it is impractical for
use in actual programming tasks, often even for those con-
sidered trivial in more conventional languages. Alan Perlis,
in his Epigrams on Programming [14], exhorts the reader to
“Beware of the Turing tar-pit in which everything is possi-
ble but nothing of interest is easy.” Perhaps, however, this
warning need not apply to programming-language enthusi-
asts or connoisseurs of art. A well-designed minimalist pro-
gramming language can exhibit a beauty of its own – an
elegance borne of its simplicity. Jot, a language devised by
Chris Barker and which forms the basis of our present work,
meets that standard. Further, its streamlined structure and
strong connection to fundamental aspects of programming
language theory allow us generate artifacts from Jot pro-
grams, such as is shown in Figure 1. These artifacts are
both interesting and meaningful, as through them we can
gain insight into the behavior of and relationship between
programs.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we begin by refreshing some of the the-
ory behind this work, including the λ-calculus and its var-
ious reduction strategies, universal combinators and their
application to languages like Iota and Jot (Section 2). Using
this, we devise several strategies for plotting the behavior of
large numbers of Jot programs (Section 3). We make several
observations about the resulting visualizations (Section 4),
describe related work in the field (Section 5), and suggest
possibilities for future work (Section 6).

Figure 1. An example visualization of Jot programs plot-
ted on a Hilbert Curve (Section 4.1). Each circle represents
a single program. The color represents how long the pro-
gram took to evaluate. Red took the longest, then blue, then
green. Black circles represent programs that did not termi-
nate within the allotted 10,000 evaluation steps. The radius
of each circle is also derived from how long the program took
to evaluate.

2. Background
We assume the reader is familiar with both the pure un-
typed λ-calculus (hereafter simply the λ-calculus) and com-
binatory logic. We briefly recapitulate a few known results
from the literature essential to our exposition. Those seek-
ing a more complete treatment should consult Hindley and
Seldin [9] or Stenlund [21].

1 2013/6/15



A β-redex (hereafter simply redex) is a λ-calculus term
of the form (λx.M)N . The term [N/x]M , which denotes the
capture-avoiding substitution of N for x in M , is called the
contractum of the redex. If a term T contains some redex we
then replace by its contractum and call the resulting term
T ′, we say the first term β-contracts to the second. If by a
finite sequence of zero or more β-contractions a term T can
be transformed to a term T ′, we say T β-reduces to T ′.

Not every term contains a redex, and thus not every
term β-reduces to a term other than itself. We say such
terms are in β-normal form (usually, simply normal form),
and the uniqueness of normal-forms up to α-equivalence
(the Church-Rosser theorem) is a well-known result [2].
Recall that two terms are α-equivalent if one term can
be transformed into the other only by renaming variables.
Several less restrictive versions of normal form have been
given attention in the literature, three of which we describe
below. The relationship between all four normal forms is
given in Table 1, reproduced from [18]. The metavariable
E denotes a term in the relevant normal form, whereas
e denotes an arbitrary λ-calculus expression. Each normal
form in effect defines what reductions are legal, thereby
leading to different behavior depending on the target normal
form.

Reduce under abstractions
Yes No

Reduce args
Normal form Weak normal form

Yes E → λx.E | xE1 . . . En E → λx.e | xE1 . . . En

ao, no, ha, hn bv

Head normal form Weak head normal form
No E → λx.E | xe1 . . . en E → λx.e | xe1 . . . en

he bn

Table 1. Comparison of four different normal forms and
reduction strategies. Reproduced from [18]

These normal forms define the structure of a given term
in normal form, they don’t describe a method of bringing an
arbitrary term to that normal form, assuming that term is, in
fact, normalizable. In general, a given λ-calculus expression
(e.g. (λx.y)Ω, where Ω is a non-terminating term) may have
more than one redex, and the reduction may or may not
terminate depending on the choice of redex.

A reduction strategy is an algorithm for selecting which
redex to reduce at each step. Reduction strategies typically
have the goal of reducing an arbitrary term to a particular
normal form, if such a reduction is possible. Table 1 also
catalogs several different reduction strategies. Applicative
order (ao) reduction reduces the leftmost innermost redex
first, and call-by-value (bv) reduces the leftmost innermost
redex not inside a λ abstraction first. Call-by-name (bn)
reduction reduces the leftmost outermost redex not inside a
λ abstraction first,while head spine reduction (he) reduces
the leftmost innermost redex not inside a λ abstraction
(that is, redexes in head position). One can verify that each
of these strategies do indeed produce only expression the
relevant normal form. Three other reduction strategies are
mentioned – these are fusion strategies mixing applicative
order reduction with one of the other three. Each can be
seen as a version of applicative order reduction in which, in
the reduction of an application, the reduction of an operator
is initially performed under another strategy. Normal order

reduction (no), hybrid applicative order reduction (ha), and
hybrid normal order reduction (hn) are the hybrid forms
corresponding to the bv, bn, and he strategies, respectively.
Interested readers should consult [18], which formed the
basis of this discussion, for an extremely lucid treatment
of the foregoing material.

2.1 Combinatory Logic
A combinator is a λ-term that contains no free variables.
Combinators are useful for combining and transforming
other fragments of code. It turns out that it is possible to
define a set of combinators that are complete–that is, any
computable function can be expressed in terms of these com-
binators. A set of combinators that is complete is called a
basis. One such basis is {S,K}, where S = λx.λy.λz.xz(yz)
and K = λx.λy.x, which serves as the foundation of the
languages Iota and Jot.

2.1.1 X Combinator
Another result widely known from the literature is the exis-
tence of bases smaller than {S,K}, that is, bases of a single
combinator [2]. The term λf.fSK is a universal combina-
tor; as it has no free variables, it is indeed a combinator,
and S and K are each recoverable from a series of applica-
tions of it. Letting X be the above combinator, S and K are
recoverable via the applications of X below.

X(X(X(XX))) ⇒ S

X(X(XX)) ⇒ K

2.2 Iota
Iota is a language described in [3], based on the universal
combinator given above. Its syntax and semantics are both
simple and straightforward. For ease of exposition and a
symmetry with the following section, we use the syntax for
Iota given in [20] rather than that of the original. The valid
characters in an Iota program are 0 and 1 ( i and * in
Barker’s original description). The grammar below generates
the valid Iota expressions.

I → 0 | 1 I I

The symbol 0 denotes the universal combinator given
above, and 1 is a prefix operator that syntactically denotes
an application. As a consequence, there must always be
exactly one more 0 than 1 in a well-formed Iota term, and
the only legal Iota term not beginning with 1 is 0 itself.

2.3 Gödel Numbering
Gödel numbering is a technique for encoding programs as
numbers. It was originally used to encode metamathematical
statements in the formal system of Principia Mathematica
as a part of Gödel’s famous “Incompleteness Theorem” [12]
For our purposes, it is useful as a way of converting programs
into numbers that can then be used to plot properties about
the execution of a given program.

2.4 Jot
Jot is a programming language related to Iota with the
property that all binary strings are valid Jot programs [3]. It
uses the same two characters as Iota, however the semantics
are slightly different.

It operates similarly to Iota, but instead of being syntac-
tic 1 is now an operator in the language itself. The duty of

2 2013/6/15



Syntax Semantics
[F ] ⇒ ϵ λx.x

⇒ 0 [F ]SK
⇒ 1 λxy.[F ](xy)

Table 2. Syntax and Semantics of Jot, as defined in [3]

the X combinator have been split between 0 and 1. The se-
mantics are defined in terms of the λ calculus, and reference
implementations use a call-by-value evaluation strategy.

The language features a straightforward translation from
the SK-calculus to Jot (see Table 3 below). This translation
is an injective map from the set of SK-calculus expressions to
Jot expressions and has the property that every Jot program
generated through it begins with a 1, meaning that they are
also unique binary numbers. This allows the translation into
Jot to be used directly as a Gödel numbering of programs in
the combinatory logic based on S and K (CLSK expressions),
and means that this subset of Jot programs are directly
executable Gödel numbers.

CLSK Jot
[S] ⇒ 11111000
[K] ⇒ 11100
[AB] ⇒ 1[A][B]

Table 3. Transformation of CL into Jot

Below, we exhibit a transformation of λf.λx.f(fx), the
Church representation of 1, into a Jot program. On line 1,
we’ve used the standard SKI bracket-abstraction algo-
rithm [4] to transform the expression into the SKI-calculus.
A more sophisticated algorithms, such as that found in [23]
would have resulted in a shorter SKI-calculus representa-
tion. On line 2, we replace all instances of I by (SKK),
transforming the original expression into an equivalent one
in the SK-calculus. In line 3, we perform the transformation
from the SK-calculus to Jot.

λfx.f(fx) ⇒ S(S(KS)(S(KK)I))(KI) (1)
⇒ S(S(KS)(S(KK)(SKK)))(K(SKK)) (2)
⇒ 1111111000111111100011110011111000 (3)
1111111000111100111001111111000111001
110011110011111110001110011100

3. Implementation
In order to facilitate different sorts of experimentation, we
implemented Jot in both Scheme and Javascript. We de-
scribe here interesting aspects of both implementations, and
the full source code is available at https://github.iu.edu/
jhemann/jot-code/.

3.1 Scheme
We first implemented a call-by-value reducer to weak normal
form, and used this to implement the semantics of Jot. This
implementation enabled us to read the expression that was
the output of the reduction, which would otherwise have
been represented merely as a closure.

We chose also to implement languages similar to Jot, but
with slightly different semantics. As the meaning of Jot pro-
grams are defined in terms of the λ-calculus, different reduc-
tion strategies and normal forms generate different meanings

for Jot programs. Using the six other reduction strategies to
the four normal forms described in (Section 2), we created
straightforward, naïve implementations in Scheme of reduc-
ers for each strategy to its normal form. Instead of binary
strings, we take input in the form of lists of binary integers.
We then augmented all of these implementations using the
state monad to count the number of β steps taken as a part
of each reduction.

Below, we demonstrate the most interesting case of β
reduction: that in which perform an α substitution before
doing the β, in order to avoid variable capture. We use a
generated symbol (or gensym), as that is guaranteed to be a
fresh variable in our expression. In order to handle programs
which loop infinitely, and as will be described in Section 4,
to provide an upper limit on the possible number of β
reductions for our visualization, we limit here the possible
number of β steps to 28∗3 − 1, which is the largest available
value for a 24bit RGB value.

(define beta
(lambda (M x e)

(pmatch e
...
((lambda (,y) ,body) (guard (not (eq? x y))

(free? x body)
(free? y M))

(let ((g (gensym)))
(do (s1 <- get)

(if (< s1 MAX_BETA)
(do (put (add1 s1))

(r1 <- (beta g y body))
(s2 <- get)
(if (< s2 MAX_BETA)

(do (put (add1 s2))
(r2

<- (beta M x r1))
(return

`(lambda (,g)
,r2)))

(do (put MAX_BETA)
(return '_))))

(do (put MAX_BETA)
(return '_))))))

...)))

Figure 2. The interesting case of beta. We perform an α
substitution before doing the β, in order to avoid variable
capture.

In Figure 3, we provide the implementation of the nor-
mal order reduction to normal form. The pmatch macro is
a simple pattern-matcher used merely for cleanliness of im-
plementation. The procedure bv is the actual call-by-value,
weak normal form reducer, and S and K are the S and K com-
binators. The procedure jot-interface is provided merely
to simplify invocation; it takes an initial string and provides
the identity function as the initial procedure and 0 as the
number of β reductions.

3.2 JavaScript Evaluator
We created an alternate implementation in JavaScript that
facilitates experimentation in the web browser. As a first
step, we created straightforward translations of the S and
K combinators into JavaScript and then created a function
that translates binary strings into JavaScript expressions
that the browser’s JavaScript engine can then execute.

In order to handle nonterminating programs and conve-
niently count the number of steps in the programs execu-

3 2013/6/15



(define jot-bv-wnf
(lambda (bls v)

(pmatch bls
(() (return v))
((1 . ,dbls)

(jot-bv-wnf dbls `(lambda (x)
(lambda (y)

(,v (x y))))))
((0 . ,dbls)

(do (n-v <- (bv-wnf `((,v ,S) ,K)))
(jot-bv-wnf dbls n-v))))))

(define jot-bv-wnf-interface
(lambda (bls)

((jot-bv-wnf bls '(lambda (x) x)) 0)))

Figure 3. Scheme implementation of call-by-value reduc-
tion to weak normal form.

tion, we converted these combinators to continuation pass-
ing style (CPS) and trampolined them [6]. Then, the driver
function is able to count execution steps and also cut off
programs that take too long to execute.

4. Visualizing Programs
The Jot language makes an excellent target for program
visualization techniques. Due to its simplicity, it is easy to
implement, and thus easy to experiment with changes to
the implementation. Further, the natural mapping of the
SK-calculus into Jot means it is easy to use to investigate
well-known phenomena from the λ-calculus as they manifest
in Jot.

Though we could have chosen to use any of a number
of metrics by which to measure Jot programs, we chose
to use the number of β steps required in the execution of
the program as our metric. In Section 5, we suggest other
possible metrics.

Using the Scheme implementation, we investigated the
impact of the reduction strategy and normal form on the
evaluation of Jot programs. As the transformation from
CLSK to Jot (illustrated in in Table 3) shows, this trivially
denumerable sequence contains within it the Gödelized en-
codings of all the expressions in the SK-calculus. We chose
specific initial subsequences of the binary numbers, treated
as Jot programs, as our data set.

We evaluated the Jot programs corresponding to roughly
the first million (1024 × 1024) integers under each of the
different reduction strategies, calculating the number of β
reductions required for each program to terminate under
each reduction strategy to its normal form. We mapped
the number of β reductions to a 24-bit RGB value, and
mapped each program into a distinct pixel in a 1024 ×
1024 pixel image beginning in the upper left-hand corner
and proceeding by row. Programs not terminating in under
28∗3 − 1 β steps are assigned that number as their value, as
this is the largest expressible integer using 24-bit colors. The
corresponding pixels appear white in the resulting images.
We also produced 2048×2048 and 8192×8192 pixel images
using the same mapping technique.

One striking result is the self-similarity that appeared.
This is most readily seen in the by-value reduction to weak
normal form (Figure 4) and the by-name reduction to weak
head normal form. It is interesting that this effect is more
visible when reducing to normal forms that do not require

Figure 4. β steps in the call-by-value reduction of the first
1048576 binary integers, taken as Jot programs, to weak
normal form

reducing under λ-abstractions. Similar structure is visible
for reduction strategies that do, though, with larger images.

A second interesting result is the similarity in the images
of the different normal form reduction strategies. The images
for the four reductions to normal form – applicative order,
and the three hybrid reductions – look strikingly similar.
The significant differences between them are brighter spots
in the images for the hybrid reduction schemata in areas
where the applicative order reduction image was black. This
indicates that these hybrid reductions took more steps to
reach a normal form than did the applicative order reduction
for these programs. Zooming in closer to the images reveals
white pixels present in the applicative order reduction image
that are not present in the hybrid ones. All of those we hand
inspected were in fact programs which loop infinitely under
applicative order reduction.

Thirdly, many of the programs which failed to termi-
nate within the maximum allowed steps were within reg-
ular distances from one another. In several places, such as
Figure 7, a close-up from the lower-middle section of Fig-
ure 6, there exist small clusters of computations that do not
halt within the required number of β steps. Examining the
non-terminating programs themselves make clear why this
occurs. Below are the first five such programs from Figure
5.

(1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0)
(1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0)
(1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1)

(1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0)
(1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0)

These programs all exhibit a common subsequence, which
is the first program itself. The first of those programs reduces
under applicative order reduction to the following expres-
sion.

4 2013/6/15



Figure 5. β steps in the normal order reduction of the first
1048576 binary integers, taken as Jot programs, to normal
form. The applicative-order version looks remarkably simi-
lar.

(lambda (x)
(((lambda (y)

(lambda (z)
(lambda (x) ((z x) z))))

x)
(lambda (y)

(lambda (z)
(lambda (x) ((z x) z))))))

The applicative-order reduction of this term will fail to
terminate.

Also surprising is how quickly all of the terminating
programs did so. Very few of the programs we ran that
terminated did so in more than several hundred β steps.
As a result, our images contained little data in the red
or green ranges. This appears to be an artifact of the
size of our datasets – the largest program used in our
visualizations here was only 26 bits in length. A larger and
more diverse set of Jot programs will demonstrate other
interesting characteristics when visualized.

4.1 Hilbert Curve Embedding
We present an alternate visualization, a mapping of Jot
programs onto the Hilbert Curve, a well-known space fill-
ing fractal [8]. The Hilbert Curve may be used to map one
dimensional data into two dimensions, such as in Randall
Munroe’s “Map of the Internet” [11], which provided inspi-
ration for the visualization we present here. One particularly
useful property of the Hilbert curve is that it tends to map
points that are nearby in one dimensional space to points
that are nearby in two dimensional space.

At first it seems a straightforward reinterpretation of Jot
programs as binary numbers would suffice for mapping Jot
programs into two dimensional space. Unfortunately, the
sequences such as 1, 01, 001, … all represent the same binary
number yet different Jot programs. Instead, we chose to

Figure 6. β steps in the applicative order reduction of the
first 67 million binary integers, taken as Jot programs, to
normal form

Figure 7. A Cluster of programs which did not terminate
within the alloted number of βs. Several have been shown
by inspection to be infinite loops.

view Jot programs as something like an address for a binary
search through the interval (0, 1). Thus, if we have a Jot
program represented as a sequence of bits x1x2x3 . . . xn, we
can compute the real number representing this program as
follows.

1

2
+

n∑
i=1

(−1)1−xi

2(i+ 1)
(4)

5 2013/6/15



According to this equation, the empty string maps to 0.5,
1 maps to 0.75, 0 maps to 0.25, 11 maps to 0.875, etc. This
mapping has the property that programs sharing a common
prefix are mapped to nearby locations on the interval (0, 1).
We suspect programs with a common prefix are likely to
have similar behavior, so this closeness property is desirable.
Once we have mapped a program onto a real number, we
then map this into two dimensional space using a Hilbert
mapping and use the resulting mapping to generate images
such as the one in Figure 1. As predicted we do indeed get
striking patterns from this larger data set.

5. Related Work
Program visualization has long been an integral part of
the software development process, including use in design,
debugging, data-flow analysis, and performance profiling
among others. A number of surveys [5, 13, 15] on the sub-
ject are available in the literature, and provide background
and history of the program visualization generally. Though
the majority of these are focused on imperative program-
ming, [24] specifically focuses on program visualization in
functional languages. All are much more concerned with pro-
gram visualization from a software engineering perspective,
and focus on much larger languages.

A number of tools to visualize aspects of the λ-calculus
have been created; here we describe only a few. In [10],
the author focuses on graphical representations of λ terms
themselves. The work of [22] and [16] provide tree represen-
tations of the terms themselves and interactive reductions,
whereas [7] provide more stylized graphs to represent the
reductions. The system in [17] demonstrates exactly the re-
ductions and normal forms we use in the present work. In [1],
the author provides a visual method for representing com-
binatory logic akin to its development in [19].

6. Conclusions and Future Work
With these methods of mapping Jot programs into 2-D
space, we have the framework to investigate relationships
between various sets of Jot programs. It would be interest-
ing to investigate the impact transformations on the original
data set (e.g. inverting inverting the binary strings or flip-
ping their bits) would have on the image. Generally, finding
better selection criteria for the programs we choose to visu-
alize might make for a more meaningful data set and more
striking images. Further, there is no reason to be limited to
visualizing programs based solely on the number of β steps
taken. We could easily have chosen to instead represent the
size of the resultant reduced term, or given different weights
for the distinct lines of β substitution.

Different embeddings into 2-D space might also yield
interesting results. For instance, plotting the programs into
a circle around the origin, in which each ring would represent
programs of length r, where r is the distance from the origin.
Finally, changing the way in which we mapped the number of
β steps to hues might yield more visually appealing images.

Much significant work has been done in visualizating pro-
grams, but always using more complex languages than Jot.
Perhaps visualization of such a minimal language will en-
able, under continuing experiments, a better understanding
of methods of program visualization itself, abstracted away
from the specifics of particular language features. The visu-
alization of such minimalist languages as Jot may yield new
insights into the structure and nature of computation. To
see these and other images at a higher resolution and watch

our image generator in action, readers are invited to view
our gallery at http://eholk.github.io/TarpitGazer.

References
[1] To dissect a mockingbird.
[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and

Semantics, volume 103. North Holland, 1985.
[3] C. Barker. Iota and jot: the simplest languages?, June

2013. URL http://semarch.linguistics.fas.nyu.edu/
barker/Iota/.

[4] H. B. Curry and R. Feys. Combinatory logic, volume i of
studies in logic and the foundations of mathematics, 1958.

[5] S. Ellershaw and M. J. Oudshoorn. Program visualization-the
state of the art. Citeseer, 1994.

[6] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined
style. In Proc. 4th ACM SIGPLAN international conference
on Functional programming, pages 18–27, New York, NY,
USA, 1999. ACM.

[7] N. B. B. Grathwohl, J. Ketema, J. D. Pallesen, and J. G.
Simonsen. In Proc. 22nd Intl. RTA, volume 10, May .

[8] D. Hilbert. Über die stetige Abbildung einer Linie auf ein
Flächenstück. Mathematische Annalen, 38:469–460, 1891.

[9] J. R. Hindley and J. P. Seldin. Lambda-calculus and com-
binators: an introduction, volume 13. Cambridge University
Press Cambridge, 2008.

[10] V. Massalõgin. Visual lambda calculus. Master’s thesis,
Rijksuniversiteit Groningen, Estonia, 2008.

[11] R. Munroe. Map of the internet. http://xkcd.com/195/,
December 2006.

[12] E. Nagel. Gödel’s proof. New York University Press, New
York, 2001.

[13] M. Oudshoorn, H. Widjaja, and S. Ellershaw. Aspects and
taxonomy of program visualisation. Software Visualisation,
7:3–26, 1996.

[14] A. J. Perlis. Epigrams on programming. SIgPLAN Notices,
17(9):7–13, 1982.

[15] G.-C. Roman and K. C. Cox. Program visualization: The art
of mapping programs to pictures. In Proc. 14th international
conference on Software engineering, pages 412–420. ACM,
1992.

[16] D. Ruiz and M. Villaret. Tilc: The interactive lambda-
calculus tracer. Electronic Notes in Theoretical Computer
Science, 248(0):173 – 183, 2009.

[17] P. Sestoft. Standard ml on the web server: Visualizing
lambda calculus reduction. Technical report, Citeseer, 1996.

[18] P. Sestoft. Demonstrating lambda calculus reduction. In The
essence of computation, pages 420–435. Springer, 2002.

[19] R. M. Smullyan. To Mock a Mockingbird: And Other Puzzles.
Oxford University Press, 1985.

[20] M. Stay. Very simple chaitin machines for concrete ait.
Fundamenta Informaticae, 68(3):231–247, 2005.

[21] S. Stenlund. Combinators, λ-Terms and Proof Theory. D.
Reidel, Dordrecht, 1972.

[22] M. Thyer. Lambda animator, June 2013. URL http://
thyer.name/lambda-animator/.

[23] J. Tromp. Binary lambda calculus and combinatory logic.
Kolmogorov Complexity and Applications, 6051, 2007.

[24] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide. A survey of
program visualizations for the functional paradigm. In Proc.
3rd Program Visualization Workshop, pages 2–9, UK, july
2004.

6 2013/6/15


