
REGION-BASED MEMORY MANAGEMENT FOR

EXPRESSIVE GPU PROGRAMMING

Eric Holk

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the School of Informatics and Computing

Indiana University

June 2016

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy.

Andrew Lumsdaine, Ph.D.

Arun Chauhan, Ph.D.

Ryan Newton, Ph.D.

Amr Sabry, Ph.D.

November 10, 2015

ii

Copyright 2016

Eric Holk

All rights reserved

iii

To my parents.

This work would not have been possible without their support, encouragement and
guidance throughout my life.

iv

Acknowledgements

As anyone who has written a dissertation will attest, it represents a gargantuan amount of

work. Like any large project, I did not do this alone. I have been fortunate to have the help

of so many people that it will prove impossible to list them all here. I will do my best.

My advisor and the rest of my committee have been invaluable. They are: Andrew

Lumsdaine, Arun Chauhan, Ryan Newton and Amr Sabry. At every milestone in this

process they offered pointed feedback that has truly made my work better. They have

taught my classes and written papers with me. In doing so, they have taught me how to

be a researcher and a scientist.

I have been fortunate to go through graduate school with a number of excellent peers

and role models. Among these are Roshan James, Michael Adams, Nate Husted, Lindsey

Kuper and Alex Rudnick. Several groups at IU deserve special mention. The PL Wonks

group was a huge encouragement, giving me the chance to get to know students and

faculty, practice talks and generally learn what PL people do. I would also like to acknowl-

edge the Open Systems Lab and its reincarnation as the Center for Research in Extreme

Scale Technologies. I want to particularly call out Kelsey Shepherd, Rebecca Lowe, Michael

Hansen, Andrew Friedly, Abhishek Kulkarni, Trevor McDonell and Nick Edmonds.

Dan Friedman is an absolutely inspirational educator. He has a knack for raising seem-

ingly simple questions that I have spent a great deal of time trying to answer satisfactorily.

Kent Dybvig taught me a better way to think about compilers in particular and software

engineering in general. I am grateful as well to Andy Keep for the Nanopass Framework,

which regularly reduced the amount of code in various Harlan compiler passes by a factor

of ten. I did most of the work adopting Nanopass while working with Andy Keep in Matt

v

Might’s lab at the University of Utah. I’m grateful to Matt for this opportunity and his

input into the design of Harlan.

Two students and later post docs were invaluable to me as mentors. These are Will

Byrd and Joseph Cottam.

Claire Alvis is an incredibly energetic and productive hacker. Harlan owes much to

her early efforts in its implementation.

I am grateful to Jeremy Siek for working with me to develop the semantics of Harlan.

His suggestion to describe the semantics in terms of separation logic led to a much nicer

solution than I would have achieved on my own.

I was able to explore some of the ideas in this thesis in my blog. I am so grateful for

my readers and the comments they gave. Not only did they help me learn to explain these

concepts better, they gave me the satisfaction of knowing I was able to help others learn

something. Similarly, I want to thank the people who said kind words to me at conferences.

It is easy to lose sight of the big picture, and simple words of encouragement from people

such as Ron Garcia reminded me that my work is interesting and important.

I wish to acknowledge those who provided funding for this work. Much of the initial

support was provided by NSF Grant Nos. 0834722, 1035658, 1111888 and 1248464 and the

Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Uni-

versity for the operation of the Software Engineering Institute, a federally funded research

and development center. References herein to any specific commercial product, process, or

service by trade name, trade mark, manufacturer, or otherwise, does not necessarily con-

stitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon Uni-

versity or its Software Engineering Institute.. This research was supported in part by Lilly

Endowment, Inc., through its support for the Indiana University Pervasive Technology In-

stitute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at

vi

IU is also supported in part by Lilly Endowment, Inc. Support was also provided by a gift

from the Mozilla Corporation.

I would like to acknowledge several teachers from before I started graduate school.

As an undergrad, Claude Anderson first introduced me to the study of programming lan-

guages and inspired an appreciation for the Scheme programming language. In elemen-

tary and high school Mike Menefee and David Pevovar both showed so much patience in

fostering my love of computing.

I cannot possibly thank my parents, George and Minerva Holk, enough. They have

taught me so much, encouraged me in so many ways and have always been there for me.

There are so many other friends and loved ones who have been there for me at every

step of the way. Thank you so much for your encouragement. I hope I can build you up

just as much as you’ve helped me.

Lastly and most importantly, I give thanks to my Creator, who not only made me but

give me the means and ability to accomplish this Ph.D.

vii

Eric Holk

REGION-BASED MEMORY MANAGEMENT FOR EXPRESSIVE GPU

PROGRAMMING

Over the last decade, graphics processing units (GPUs) have seen their use broaden from

purely graphical tasks to general purpose computation. The increased programmability

required by demanding graphics applications has proven useful for a number of non-

graphical problems as well. GPUs high memory bandwidth and floating point perfor-

mance make them attractive for general computation workloads, yet these benefits come

at the cost of added complexity. One particular problem is the fact that GPUs and their as-

sociated high performance memory typically lie on discrete cards that are separated from

the host CPU by the PCI-Express bus. This requires programmers to carefully manage

the transfer of data between the CPU and GPU memory so that the right data is in the

right place at the right time. Programmers must design data structures with serialization

in mind in order to efficiently move data across the PCI bus. In practice, this leads to

programmers working with only simple data structures such as one or two-dimensional

arrays and the applications that can be easily expressed in terms of these structures. CPU

programmers have long had access to richer data structures, such as trees or first class

procedures, which enable new and simpler approaches to solving certain problems.

This thesis explores the use of region-based memory management (RBMM) to over-

come these data movement challenges. RBMM is a technique in which data is assigned

to regions and these regions can then be operated on as a unit. One of the first uses of

regions was to amortize the cost of deallocation. Many small objects would be allocated in

a single region and the region could be deallocated as a single operation independent of

the number of items in the region. In this thesis, regions are used as the unit of data move-

ment between the CPU and GPU. Data structures are assigned to a region and thus the

viii

runtime system does not have to be aware of the internal layout of a data structure. The

runtime system can simply move the entire region from one device to another, keeping the

internal layout intact and allowing code running on either device to operate on the data in

the same way.

These ideas are explored through a new programming language called Harlan. Harlan

is designed to simplify programming GPUs and other data parallel processors. It pro-

vides kernel expressions as its fundamental mechanism for parallelism. Kernels function

similarly to a parallel map or zipWith operation from other functional programming lan-

guages. For example, the expression (kernel ([x xs] [y ys]) (+ x y)) evaluates

to a vector where each element is the sum of the corresponding elements in xs and ys. Ker-

nels can have arbitrary body expressions that can even include kernels, thereby supporting

nested data parallelism. Harlan uses a region-based memory system to enable higher level

programming features such as trees and algebraic data types (ADTs) and even first class

procedures. Like all data in Harlan, first class procedures are device-independent, so a

procedure created in GPU code can be applied in CPU code and vice-versa.

Besides providing the design and description of the implementation of Harlan, this

thesis includes a type safety proof for a small model of Harlans region system as well as a

number of small application case studies. The type safety proof provides formal support

that Harlan ensures programs will have the right data in the right place at the right time.

The application case studies show that Harlan and the ideas embodied within it are use-

ful both for a number of traditional applications as well as problems that are problematic

for previous GPU programming languages. The design and implementation of Harlan, its

proof of type safety and the set of application case studies together show that region-based

memory management is an effective way of enabling high level features in languages tar-

geting CPU/GPU systems and other machines with disjoint memories.

ix

Andrew Lumsdaine, Ph.D.

Arun Chauhan, Ph.D.

Ryan Newton, Ph.D.

Amr Sabry, Ph.D.

x

Contents

Abstract i

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Background 5

2.1. Parallel Computing Architectures 5

2.2. General Purpose GPU Computing 7

2.3. Region-based Memory Management 11

Chapter 3. Related Work 13

3.1. GPU Applications and Algorithms 13

3.2. Data Parallelism 14

3.3. GPU Programming Languages 15

3.4. Regions 18

3.5. Semantics 20

Chapter 4. Exploring Regions with the Harlan Language 22

4.1. A User’s View of Harlan 22

4.2. Region-based Memory Management in Harlan 33

Chapter 5. Harlan Implementation 41

5.1. Compilation 41

5.2. Implementation of the Regions System 51

5.3. Optimizations 52

5.4. In-kernel Error Handling 55

xi

Chapter 6. Region Semantics for Multi-memory Systems 57

6.1. Core Harlan 58

6.2. Operational Semantics 60

6.3. A Separation Logic Primer 69

6.4. Type System 70

6.5. Type Safety 78

6.6. Auxiliary Lemmas 94

6.7. Designing for Proof Mechanization 95

Chapter 7. Harlan Case Studies 97

7.1. Benchmarking Methodology 97

7.2. Dense Matrix Multiplication 98

7.3. Ray Tracing 100

7.4. Graph Algorithms 110

7.5. Integrating with external applications 117

7.6. GPU Performance Characterization 120

Chapter 8. Conclusion 126

Bibliography 128

Curriculum Vita

xii

List of Figures

1.1 CPU-GPU System Architecture. The size of the arrows indicates the relative data

transfer rate of the three interfaces. 3

2.1 CUDA Vector Addition Kernel 8

2.2 CUDA Vector Addition Host Code 9

2.3 The Harlan equivalent to the vector addition program in Figure 2.1 and Figure 2.2. 9

2.4 CUDA Processing Architecture 10

2.5 An example arrangement of regions and values contained within them. 12

4.1 The grammar of Harlan’s core forms. Harlan programs consist of a module

which should define a function called main. The main function is not necessary

for libraries. Only Harlan’s primitive forms are listed here; Harlan forms that are

not listed here are implemented as macros or library functions. 24

4.2 A selection of Harlan’s non-core forms. These are implemented either as macros

or functions in Harlan’s standard library. Many of these are described in more

detail in Section 4.1.2. 25

4.3 Several simple example kernels and their output. 26

4.4 Several examples of vectors in Harlan. 32

4.5 Examples showing how data is assigned to and arranged within regions. 37

4.6 An example of a possible data structure if ADTs could take multiple region

parameters. The leftward nodes are in region r1 and the rightward nodes are in

region r2. 38

xiii

5.1 Harlan Compiler Passes. 43

5.2 The call graph for a λ -Calculus interpreter written in Harlan. The strongly

connected components (SCCs) are indicated by squares, while ovals represent

functions and arrows indicate that a function may call another. Note that most of

these functions are generated internally by the compiler. 50

5.3 An example of false recursion. 51

6.1 The syntax for Core Harlan. This is a small model of the Harlan language

which we will use to study its semantics. The e non-terminal represents Harlan

expressions. Variables are indicated by x, while r indicates a region variable. l

represents a location, either CPU or GPU. 59

6.2 The baseline interpreter for the λ -Calculus. Procedures (lambda) have been

extended with location and region requirement annotations that are part of Core

Harlan but not standard λ -Calculus. 60

6.3 The interpreter from Figure 6.2 modified to thread store and location variables

throughout the execution. 62

6.4 An example store. 62

6.5 Region manipulation functions. 65

6.6 The full interpreter for Core Harlan. 66

6.7 Syntax of types for Core Harlan. 71

6.8 Machine typing rules. 71

6.9 Typing rules for expressions. 74

6.10 Location compatibility rules. Intuitively, l <: l′ means that code that runs in

location l can also run in location l′. 75

6.11 Continuation typing rules. 76

6.12 Auxiliary functions. 78

6.13 Typing rules for values. 78

xiv

7.1 The core dense matrix multiplication kernel. This assumes we are multiplying

two square matrices, A and B. 98

7.2 Dense matrix multiplication performance. 99

7.3 OpenCL dense matrix multiplication kernel. 99

7.4 A portion of the ray tracing program. This program represents a scene as a vector

of procedures that computer the intersection of an object with a ray. The program

also makes use of custom syntax in interpolate-range, which uniformly

samples a range of floating pointer numbers. 101

7.5 The effect of thread divergence on ray tracing performance. In this particular case,

thread divergence does not make a significant impact on the overall execution

time. 103

7.6 An image rendered by ray tracing using a direct style and KD trees. Importantly,

they are identical. 104

7.7 Harlan code to build a KD-tree. 106

7.8 A KD-Tree produced by Harlan. 107

7.9 A 2D projection of the scene and tree from Figure 7.6. 108

7.10 Harlan code to traverse a KD tree. 108

7.11 Possible intersections of a ray and two bounding volumes. 109

7.12 An example graph on which to perform a breadth first search. 111

7.13 Several representations of the graph in Figure 7.12. 112

7.14 Harlan’s representation of the graph in Figure 7.12. Assume variables are in

scope that match vertex names to identifiers. For example, (let ((A 0) (B

1) ...) ...). 112

7.15 An example of how kernel-update! might work. 114

7.16 Harlan SCC coloring code. 116

7.17 Harlan SCC component assignment code. 117

xv

7.18 Harlan SCC driver code. 118

7.19 Transfer times between the CPU and GPU memory for buffers of various sizes. 121

7.20 Time to transfer 256MB of data from the CPU to the GPU, dividing the total data

into chunks. The per-transfer overhead is minimal when the chunk size is 8MB

or greater. 122

7.21 Roofline model for NVIDIA Tesla K40c GPU. 123

7.22 Vector addition in Harlan compared with vector addition in CUBLAS. 124

7.23 Dot product in Harlan compared with dot product in CUBLAS. 125

xvi

CHAPTER 1

Introduction

Thesis Statement

Region-based memory management is an effective way of enabling high level features in

languages targeting machines with multiple disjoint memories.

Over the last decade, graphics processing units (GPUs) have become popular for high

performance computing due to the high throughput afforded by their massively parallel

architecture. Some applications have reported as much as a 10 to 1000× speedup by mov-

ing them to the GPU [53]. For example, the EigenCFA project reported a 72× speedup over

a CPU version of control flow analysis [67]. [29] reports up to a 40× speedup on a Discrete

Fourier Transform (DFT) implementation. [75] and [83] report impressive speedups as

well.1 However, developing high performance algorithms for the GPU remains challeng-

ing. Programming models such as CUDA or OpenCL have somewhat eased the burden of

general purpose GPU computing, but these models are still very low-level. Several higher

level domain specific languages such as Copperhead [13] and Accelerate [14] have sought

to simplify GPU programming so that programmers can ignore the architectural details

and focus on their algorithms.

A large proportion of these languages rely extensively on immutable, multidimen-

sional rectangular arrays. The benefits of immutability are clear, aiding the programmer

in reasoning about their program and simplifying debugging with deterministic seman-

tics. The benefits extend to language implementers as well, since compilers have much

more freedom to optimize programs when there are fewer observable effects to preserve.

1All of these claims are somewhat controversial. [53] reports that when comparing highly tuned GPU and
GPU codes the GPU only outperforms the CPU by about 2.5×.

1

1. INTRODUCTION

Constraining programs to rectangular arrays also facilitates implementation, as these data

structures map naturally onto data parallel hardware.

Unfortunately, these languages are also limited. Many problems do not fit nicely into

rectangular arrays and would be better be served by more complex structures like trees

and graphs. Consider one implementation of control flow analysis on the GPU [67]. While

this algorithm showed an impressive 72× speedup, achieving the speedup required the

authors to go to great lengths to cast the problem as a linear algebra problem. We intend to

simplify GPU implementations of problems such as these by providing even higher level

control and data structures in a language that can run on the GPU.

This thesis explores the use of region-based memory management (RBMM) as a means

of increasing the expressiveness of programming languages that target GPUs. GPU pro-

gramming is more difficult than CPU programming for at least two high level reasons: (1)

the GPU is a physically separate computation device and (2) current GPUs access mem-

ory in a disjoint address space. Existing GPU programming languages, ranging from the

low-level CUDA and OpenCL to high-level languages like Copperhead [13] and Acceler-

ate [14], primarily address the first issue by simplifying the process of writing code for

execution on the GPU. Other languages, such as NOVA [16], allow richer data structures

like algebraic data types (ADTs) and first class procedures, but do not allow these to move

between the CPU and GPU. They improve the expressiveness of the language but entirely

ignore problem the data movement issues.

This data movement problem stems from the fact that a CPU-GPU system is an exam-

ple of a distributed system. Figure 1.1 illustrates the architecture of a CPU-GPU system.

The two devices run independently of each other, and more importantly, they have entirely

different address spaces. This means that transferring intricate pointer structures requires

traversing and serializing the whole structure and then recreating it on the target device.

Furthermore, pointers in one memory location are meaningless when viewed in the con-

text of another location, and thus to move a pointer structure, any internal pointers must

be rewritten with pointers that are meaningful on the new location.

2

1. INTRODUCTION

CPU

Memory

GPU

Memory

PCI Express Bus

FIGURE 1.1. CPU-GPU System Architecture. The size of the arrows indi-
cates the relative data transfer rate of the three interfaces.

These problems can be solved using RBMM, which is a way of grouping objects that

are in some way related into aggregate units called regions. This technique has been used

for garbage collection [80] and for ensuring memory reference safety [31]. In our case, a

region inference algorithm can statically determine a set of regions that contains all the

data needed by a section of code. These regions can then moved as single units between

memories. Within a region, pointers are represented as offsets from the base of a region,

which means their relative locations are unchanged when a region migrates to a different

physical location. Thus, there is no need to rewrite internal pointers or traverse the entire

structure when data is needed by a different computational device.

While this work considers regions in the context of CPU-GPU systems, the basic ap-

proach should translate to other distributed systems, including compute clusters.

The vehicle for exploring RBMM applied to GPU programming is a new programming

language called Harlan. Harlan [38,39] enables richer control flow constructs by providing

first class functions (lambda). Procedures created in Harlan can move freely between the

GPU and central processing unit (CPU). This ability can be used, for example, to allow

3

1. INTRODUCTION

a computation started on the CPU to move to the GPU and vice-versa. Harlan also sup-

ports richer data structures, such as non-rectangular arrays and ADTs. Harlan resembles

Scheme in syntax and features lightweight operators for data parallel computation, such

as kernel and reduce. Below is an example demonstrating how a Harlan programmer

might express a matrix-vector product of M and xs.

(kernel ((m M))

(reduce + (kernel ((y m) (x xs)) (* x y))))

Harlan’s rich data structures are complicated for GPUs because of their heavy use of

pointers. Traditionally working with pointer structures in a GPU language has been ei-

ther explicitly disallowed or it necessitated serializing the structure on the host side before

transferring it to the device memory. Using regions sidesteps these issues by constructing

data in a form that is readily transferred between host and device memory. Furthermore,

this is done without requiring programmer involvement, as the assignment of data to re-

gions can be determined automatically (region inference [80]). Data can then be moved in

units of regions, which enables efficient data transfer between the CPU and GPU memory.

The rest of this thesis proceeds as follows. Chapter 2 provides some background infor-

mation on general purpose GPU (GPGPU) programming. Chapter 3 surveys other work

in this area and sets Harlan in its proper context. Chapter 4 presents plans for developing

and evaluating Harlan as a GPGPU language with region-based memory. Chapter 5 goes

into more detail about the implementation of the Harlan language and it’s region-based

memory system. Chapter 6 gives a formal semantics for a subset of Harlan and presents

a proof of type safety. Chapter 7 provides a more in depth look at several Harlan appli-

cations to show its usefulness on a variety of problems that are challenging for previous

GPU programming approaches. Finally, Chapter 8 summarizes this work and makes sev-

eral concluding remarks.

4

CHAPTER 2

Background

Many problems in computing are simply too big for a single machine. While we have often

been able to rely on clock speed increases to improve performance, in recent years there

has been a marked shift towards increasing parallelism instead. Unfortunately, realizing

the benefits of parallelism nearly always requires changes to the program and requires the

programmer to be aware of an increasing number of architectural details. In this chap-

ter, we will survey several parallel programming architectures and paradigms in order to

better understand the challenges and solutions in general purpose GPU computing.

2.1. Parallel Computing Architectures

Parallelism can be found at every level of computer architecture. Within a single CPU

core, we find instruction-level parallelism (ILP) in which the processor will attempt to si-

multaneously issue multiple instructions provided the data dependencies allow it. Many

CPUs include a number of single instruction, multiple data (SIMD) instructions that pro-

vide small scale vector processing. Vector processors extend this concept even further. Ma-

chines may have more than one CPU and CPUs now nearly always have multiple proces-

sor cores. Both of these configurations are considered symmetric multiprocessors (SMPs).

To scale up even further, multiple machines can be connected into a cluster that behaves

like a single machine. Message passing models such as MPI simplify programming clus-

ters by providing a single program, multiple data (SPMD) programming model.

Lately there has been a trend towards hybrid computers, which combine a traditional

CPU with one or more accelerators. These accelerators are a separate processor that are

optimized for special purpose computation. GPUs fall under the category of accelerators,

as do field programmable gate arrays (FPGAs) and Intel’s Xeon PHI.

5

2. BACKGROUND

2.1.1. Symmetric Multiprocessors. While once purely in the realm of high end work-

stations, SMPs are now commonplace. Nearly all recent laptop and desktop computers

including a multicore processor. Many smartphones now include four or more processor

cores. Symmetric multiprocessors are machines with multiple identical processors, typ-

ically even running at the same clock speed.1 Generally, SMPs are shared memory ma-

chines, meaning each core can access any of the memory in the system. Sometimes mem-

ory is configured such that certain portions of memory can be accessed more efficiently by

certain processors. These are called non-uniform memory access (NUMA) machines.

On aspect of SMPs is their cache coherency protocol. Because each processor may

access any of the memory, care is needed to ensure consistency and correctness of modi-

fications to shared memory locations. Processors enable synchronization through atomic

operations, such as compare and swap (CAS). These operations perform a memory read,

modification and write as a single unit, such that no thread running on another processor

can interfere. Atomic operations like CAS are sufficient to implement a variety of synchro-

nization primitives, such as mutexes.

2.1.2. Accelerators. Recent years have seen a resurgence in interest in compute accel-

erators. These are special purpose processors that are installed inside a general purpose

computer. One of the most common accelerators is the graphics processing unit, which was

originally designed to accelerate 3D rendering tasks. A number of other accelerators are

available, such as FPGAs, the Intel Xeon PHI, or Google’s Tensor Processing Unit. Each of

these is optimized for certain types of computation, such as vector processing or machine

learning. Due to their specificity, programs must be specially written to take advantage of

an accelerator. Often, these programs must target a specific accelerator from a particular

vendor, though application programming interfaces (APIs) such as OpenGL and OpenCL

aim to alleviate this somewhat.

1Some mobile processors are able to independently adjust the clock speed of each core in order to maximize
power efficiency.

6

2. BACKGROUND

2.1.3. Clusters. The next step up in the computer hierarchy is to build a cluster of

machines. One example is the Beowulf cluster [77] and most high performance computers

today use a cluster architecture. Programs are typically written in a SPMD style, where

each node runs the same program and they divide the computation by passing messages.

Although Harlan as currently implemented targets only single node systems, its region

system could probably be extended to enable safely passing rich data structures between

nodes in a cluster. Indeed, similar techniques have already been used in the context of

Haskell [86].

2.2. General Purpose GPU Computing

Graphics processing units are specialized processors whose development has primar-

ily been driven by the demand for stunning visuals in video games. As GPUs have become

more powerful, they have evolved into general-purpose data-parallel processors and now

see increased use in scientific computing and other disciplines.

GPUs consist of several processing units, called streaming multiprocessors (SMs) in

NVIDIA’s terminology, which are analogous to cores on a traditional CPU. Each of these

can manage many thread contexts at once, and thus high performance GPU kernels are

written in terms of thousands of threads. Unlike CPUs, GPUs make little use of speculation

and out of order execution to reduce latency and instead hide latency by rapidly switching

between threads as their dependencies are satisfied.

The most popular framework for programming NVIDIA GPUs is CUDA [59], which

presents the programmer with the illusion of a virtually unlimited set of threads. These

threads are grouped into warps that execute in lock step, and the warps are grouped into

blocks. OpenCL presents similar concepts using different terminology [50]. High perfor-

mance GPU kernels are aware of the divisions between blocks and warps.

A simple CUDA example program is shown in Figures 2.1 and 2.2. The kernel code in

Figure 2.1 adds two vectors, a and b, and stores the result in c. The kernel executes with N

threads, so each thread is responsible for adding one element of the input vectors. CUDA

kernels run as a grid made up of blocks of threads. This grid is often bigger than the input

7

2. BACKGROUND

__global__

void add_vectors(int N,

const double *a,

const double *b,

double *c) {

int i = blockIdx.x;

if(i < N)

c[i] = a[i] + b[i];

}

FIGURE 2.1. CUDA Vector Addition Kernel

data, so there is a check to be sure the thread index is within bounds. One reason the grid

can be larger than the data size is if the block size does not evenly divide the data size.

Executing the kernel in Figure 2.1 requires a fair amount of addition code, which is

shown in fig:cuda-vector-addition-host-code. This involves allocating GPU memory and

copying the data from the host memory to the device memory. The kernel is actually

called in the add vectors<<<N, 1>>>(...) line, which specifies the kernel should

launch N blocks with a block size of 1. Finally, when the kernel is completed, another call

to cudaMemcpy copies the results from the GPU to the host memory.

By contrast, an analogous Harlan program is shown in Figure 2.3. This is significantly

shorter, in part because the Harlan language takes responsibility for all data movement.

Memory management on GPUs is more complicated than on CPUs. Most of the mem-

ory falls into the global memory category, which resides in off-chip DRAM. GPUs also

provide a small amount of local memory for each SM, which is akin to L2 cache on CPUs

but must be managed explicitly by the programmer. Changes to global memory are visi-

ble to all CUDA threads, while local memory changes are only visible to a single thread

block. Local memory is very fast, but limited in size. Writing efficient GPU codes requires

judicious use of local and global memory.

Figure 2.4 summarizes the logical architecture of a CUDA-capable device. The proces-

sor consists of some number of SMs, each containing some number of threads (represented

as wavy lines) grouped into warps (represented as boxes around threads) all sharing a

8

2. BACKGROUND

int main() {

double a[N], b[N], c[N];

double *dev_a, *dev_b, *dev_c;

fill_array(a, N);

fill_array(b, N);

cudaMalloc(&dev_a, N * sizeof(double));

cudaMalloc(&dev_b, N * sizeof(double));

cudaMalloc(&dev_c, N * sizeof(double));

cudaMemcpy(a, dev_a, N * sizeof(double),

cudaMemcpyHostToDevice);

cudaMemcpy(b, dev_b, N * sizeof(double),

cudaMemcpyHostToDevice);

add_vectors<<<N, 1>>>(N, dev_a, dev_b, dev_c);

cudaMemcpy(c, dev_c, N * sizeof(double),

cudaMemcpyDeviceToHost);

output_results(c, N);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

FIGURE 2.2. CUDA Vector Addition Host Code

(module

(define (main)

(let* ((N 10000)

(a (load-vector N))

(b (load-vector N))

(c (kernel ((a_i a) (b_i b))

(+ a_i b_i))))

(output-results c))

FIGURE 2.3. The Harlan equivalent to the vector addition program in Fig-
ure 2.1 and Figure 2.2.

9

2. BACKGROUND

Global Memory

Streaming

Multiprocessor

Local Memory

…

…

…

…

Streaming

Multiprocessor

Local Memory

…

…

…

…

Streaming

Multiprocessor

Local Memory

…

…

…

…

Streaming

Multiprocessor

Local Memory

…

…

…

…

FIGURE 2.4. CUDA Processing Architecture

small local memory. All of the SMs share a single global memory. In terms of CUDA

programs, each SM executes one block at a time.

In the current generation of GPUs, the GPU memory is almost always distinct from

the memory of host CPU, meaning applications must carefully schedule transfers over the

relatively slow PCI Express bus. We say data that is directly accessible to the CPU is in host

memory, while data that is stored in the GPU memory is said to reside in device memory.

Programming models for CPUs and GPUs have traditionally been quite different, and

yet the actual architectures of CPUs and GPUs are becoming more similar. Newer gen-

erations of CPUs include more powerful vector processing capabilities, such as the AVX-

512 instruction set in Intel’s Skylake CPUs. Likewise, GPUs have adopted features that

were once CPU-only, such as the hardware-managed L2 caches that appeared in NVIDIA’s

Fermi-class GPUs. This suggests that a single unified programming model for both CPUs

and GPUs is achievable and code that is written to run well on the GPU can also run well

on the CPU with minimal changes. In other words, the programmer should be able to

use the same language for both CPU and GPU code, with no restrictions on either. The

primary architectural differences at this point are memory bandwidth, the width of the

10

2. BACKGROUND

vector processing units, and the tradeoff between simultaneous multithreading and out of

order speculative execution.

2.3. Region-based Memory Management

Region-based memory management is a technique for managing the lifetime of objects

by assigning them to regions. Allocating from a region is typically cheap, and all objects

in a region are deallocated at once. The ML Kit compiler used RBMM as a general garbage

collection strategy [80]. In this system, objects were automatically assigned to regions

based on their inferred lifetimes. An important safety property is that a region must outlive

all references to any object contained within it.

Below is an example of what a program in a Scheme-like language with explicit regions

might look like.

(let-region r1

(let ((f (lambda (z)

(let-region r2

(let ((x (ref r1 5))

(y (ref r2 6)))

(let ((p (cons y x)))

(cdr p)))))))

(deref (f f))))

This example creates a region r1 and creates a function f which creates its own local

region then allocates a number into region r1 and another into region r2. Finally, f returns

the reference in r1 after shuffling it through a pair. Upon return, the program dereferences

the reference and the whole program evaluates to the number 5.

Figure 2.5 shows what the memory layout would be before returning from f. The

box labeled r1 is the region created outside of the function, while the box labeled r2 is

the region that is local to function f. The pair p is shown with pointers into each region.

Regions follow a stack discipline, so upon exiting f, region r2 would be destroyed. The

allocation by f into region r1 can be thought of allocating from the caller’s stack frame.

11

2. BACKGROUND

r1

r2

5

6

p

FIGURE 2.5. An example arrangement of regions and values contained
within them.

The region system can verify that this program is safe, even without a tracing garbage

collector, by ensuring that no references to a region outlive the region.

Regions are sometimes also known as arenas, and can be used to amortize the deallo-

cation overhead over many objects. For example, deallocating a linked list takes O(N) time

when using malloc and free, but when all nodes are allocated in an arena, deallocation

becomes a constant time operation–one simply needs to deallocate the whole region at

once. This approach is used to improve performance in projects such as the Apache Web

Server.

Another use of regions might more accurately be called lifetimes. This version of re-

gions appears in programming languages like Cyclone [31] and Rust [58] to enforce safety

properties by ensuring that an object outlives any references to the object. Thus, a lifetime

is the period that an object must remain live to ensure all reference to it remain valid. Life-

times may be analyzed statically and provided they are proven safe, they do not have any

effect at runtime. Regions, on the other hand, do have a runtime impact; they are an actual

object that is allocated and deallocated at runtime, and other objects are represented as

pointers into their region. Using this terminology, ML Kit and Harlan use regions, while

Cyclone and Rust use lifetimes.

12

CHAPTER 3

Related Work

Harlan and its region system extend a large body of related work. In this chapter, we

survey work from several areas and discuss how it relates to Harlan.

3.1. GPU Applications and Algorithms

Some of the initial inspiration for this project came from EigenCFA [67]. EigenCFA is

an algorithm for control flow analysis (CFA) on the GPU that achieves up to a 72× speedup

over a CPU implementation. This project showed that GPUs are applicable to more than

just traditional scientific computing problems, but also highlighted the limitations on the

expressiveness in current GPU languages. In order to achieve this performance, the au-

thors had to recast CFA in terms of linear algebra. Rather than using more traditional rules

for evaluating λ -Calculus expressions, the authors developed a way of encoding programs

and runtime environments into matrices and using matrix multiplication to simulate their

evaluation. While this is no doubt clever, ideally a better programming language would

allow the programmer to express CFA in a more direct style.

Some of the earliest GPGPU instances were programmed as graphics applications that

solved a non-graphics problem. One early matrix multiplication algorithm “computed

by literally visualizing the computations of a simple parallel processing algorithm” [52].

Effectively, computation occurred by rendering an image and interpreting the results as

the solution to a matrix multiplication problem.

GPUs are now regularly used to solve a variety of problems. These include graph

algorithms such as breadth first search (BFS) and single source shortest paths (SSSP) [41,

57], various rendering algorithms such as ray tracing, KD trees and ray marching [44].

GPUs have even be used to accelerate cryptocurrency mining [21, 60].

13

3. RELATED WORK

3.2. Data Parallelism

GPUs are designed for data parallel computation—that is, applying the same relatively

simple computation to a large amount of data. This is evident in the fact that GPUs have

wide SIMD lanes and high memory bandwidth. As such, much of the prior work on data

parallel programming languages is relevant to GPU programming as well. The NESL pro-

gramming language is one of the first practical implementations of a data parallel program-

ming language [9]. This language built on earlier work by Guy Blelloch on the scan-vector

model [8].

NESL was partially inspired by the Connection Machine Lisp [76]. Connection Ma-

chine Lisp was built around a new data structure called a xapping. Xappings are distributed

associative arrays. Each processor is responsible for some subset of the keys in the array,

and operations on xappings are automatically applied to values with matching keys. Har-

lan draws inspiration from Connection Machine Lisp as well, in that both languages are

designed to solve problems beyond pure numerical computation.

More recently, NESL has been successfully ported to the GPU [6]. This work used the

existing NESL compiler and provided a new implementation of the VCODE interpreter

that executes vector operations on the GPU. The new VCODE interpreter is also respon-

sible for performing kernel fusion, which is critical for good performance on the GPU.

Particular care is given to the representation of vector segment descriptors, as different

representations have different performance characteristics. Similarly, Harlan is concerned

with developing efficient representations of interesting data structures.

Data parallelism in the presence of trees often suffers from unbalanced computation,

that is, some processors receive too much work to do while others receive too little. Lazy

tree splitting is a technique that addresses this by dynamically partitioning workloads

based on when compute resources are available [5]. This is in contrast to Eager Binary

Splitting, which is used by Cilk [27] and Intel’s Threading Building Blocks [45]. Eager bi-

nary splitting divides the work up into chunks of fixed sizes ahead of time. This leads to

14

3. RELATED WORK

the Goldilocks problem, that is, balancing the chunk size between having so much paral-

lelism that scheduling overhead destroys the benefits of parallelism and having such large

blocks that not all compute devices are busy. Lazy tree splitting divides the remaining

work when there is reason to believe that there are idle processors, and otherwise keeps

processing the current chunk sequentially. Key to this technique is designing data struc-

tures such that the system can efficiently partition the remaining work in half. The authors

accomplish this by using ropes and zippers.

Several themes in this work relate to Harlan. One is selecting underlying data struc-

tures to enable efficient implementation. This is related to Harlan’s use of regions to man-

age the runtime representation of data. The lazy tree splitting paper is also performed

with performance portability, which is currently a weakness of Harlan. Harlan has many

parameters that need tuned, which depend on the characteristics both of the program and

the hardware. Harlan’s use of OpenCL makes it a natural vehicle to explore performance

portability, as it can trivially use the CPU, GPU and other devices like the Intel’s Xeon PHI.

3.3. GPU Programming Languages

In the early 2000s, GPU had become programmable enough that practitioners began

applying them to more areas than just graphics. A variety of techniques developed to

convert scientific computation problems into graphics problems suitable for execution on

a GPU. Many of these techniques are surveyed in [62]. These techniques showed the

promise of general purpose computation on graphics hardware and soon general purpose

computation was supported directly in both graphics hardware and new programming

languages.

One early programming language for GPGPU programming is Brook [12]. Brook is

an extension to C that adds the concepts of streams, kernels and reductions. Streams are

analogous to Harlan’s vectors, kernels are functions that can be mapped over streams,

and reductions combine multiple values. Prior to Brook, GPGPU computation required to

programmer to be extremely familiar with the latest graphics APIs and hardware. Brook

15

3. RELATED WORK

still compiled to graphics APIs, since more general purpose APIs such as CUDA had not

yet been released.

The advent of CUDA allowed programmers to work with data without massaging it

into an image. Instead, programmers would write in CUDA-C, a dialect of C that includes

support for executing kernels on an NVIDIA GPU. CUDA’s programming environment

was still very low level. One effort at alleviating this is Copperhead [13]. Copperhead is a

domain specific language (DSL) embedded in Python for GPU computing. Functions can

be compiled for the GPU by applying an @cu decorator. Data parallelism is accomplished

using operators like map. Copperhead allows lambda for defining mapping functions,

but Copperhead’s lambda is not as general as Harlan’s. Copperhead’s concept of places

allows programs to manage the location of data and code using Python’s with statement.

Copperhead also supports arbitrarily nested data structures, using the same techniques

used in the scan-vector model of parallelism [8].

Accelerate is a similar language for GPU computing embedded in Haskell [14]. Ac-

celerate uses the operator overloading technique to embed itself in Haskell and makes

heavy use of Haskell’s type system to statically eliminate errors such as indexing into an

array with an incorrect shape. By contrast, Copperhead detects many of these same is-

sues through runtime program analysis. Programs are compiled into CUDA code using

skeletons. Skeletons represent the outline of a data parallel operator that can be filled in

with the specific computation. Later work on Accelerate has enabled optimizations like

sharing recovery and array fusion to reduce code duplication and eliminate intermediate

results [55].

One key challenge to efficient GPU programming is managing the communication be-

tween the host and device memories. [46] addresses this problem with a fully automatic

system. It is implemented as several compiler passes and a runtime library. The compiler

detects points at which communication must happen and inserts the appropriate code

to do so. This includes several optimizations, including map promotion, alloca promo-

tion and glue kernels. Alloca promotion is similar to Harlan’s let lifting (Section 5.3.2)

while glue kernels are similar to remote vector allocation in Harlan (Section 5.3.4) The

16

3. RELATED WORK

goal of these optimizations is to transform a program from consisting of mostly cyclic

communication–that is, copying all data to the GPU, launching a kernel and then copying

all the data back from the GPU–into a program consisting of mostly acyclic communication,

where the data is copied to the GPU at the start, then several kernels execute and finally

the relevant results are copied back. Harlan attempts to do something similar dynamically

through lazy data transfer (Section 5.3.3) Their system copies data at the granularity of al-

location units, thereby allowing double indirection and arbitrary pointer arithmetic. These

allocation units are quite similar to Harlan’s regions, although Harlan’s region system sup-

ports arbitrary levels of pointer indirection due to its static type system.

Although CUDA now supports the use of recursive functions in kernels, earlier ver-

sions did not and OpenCL still does not. There are well-known techniques, however, for

overcoming these limitations. OptiX, a DSL for ray tracing on the GPU, allows shaders

to use recursion to follow rays reflecting off surfaces [63]. This is done by applying a

continuation passing style (CPS) and trampolining technique to remove the recursion. On

the other hand, [87] describes a technique for implementing recursion by explicitly manage

stacks. Harlan implements recursion using a similar technique.

The latest release of CUDA includes support for a number of C++ 11 features, including

lambda functions [36]. While CUDA’s lambda functions open up new programming styles,

they are not as powerful as Harlan’s lambdas. Harlan lambdas are independent of their

device, while CUDA lambdas cannot be applied on both the host and device.

Work on compiling Mozilla’s Rust for the GPU is similar to this in its focus on enabling

higher-level abstractions in GPU kernels [40]. Rust for the GPU supports some enum types

(Rust’s version of ADTs), but cannot handle pointer structures like those possible in Har-

lan.

NOVA [16] is a programming language that is very similar to Harlan. NOVA is also a

LISP-like language that expresses data parallelism using primitives like map, reduce and

scan. Like Harlan, NOVA supports ADTs, first class procedures and recursive functions

in kernels. In addition, NOVA supports type-polymorphic functions. One key difference

is that NOVA is only used to define kernel code, producing functions that may be called

17

3. RELATED WORK

by a host program written in a language like C++. Harlan, on the other hand, defines a

language for both the kernels and the host code.

3.4. Regions

Regions have been used in programming languages for a variety of purposes, includ-

ing garbage collection, reasoning about the safety of pointers, and reasoning about the

safety of sharing data between parallel processes.

The ML Kit compiler used RBMM as a general garbage collection strategy [80]. In this

system, objects were automatically assigned to regions based on their inferred lifetimes.

An important safety property is that a region must outlive all references to any object

contained within it.

Several programming languages like Cyclone [31] and Rust [58] use a version of re-

gions to enforce safety properties by ensuring that an object outlives any references to the

object. These languages analyze the lifetime of various data statically and provided the

lifetimes are proven safe, they do not have any cost at runtime.

Regions are also used for safe parallelism. Legion is one project that uses a logical

region system to ensure safety in parallel programs while providing control of data move-

ment through the memory hierarchy to the programmer [2]. Function types are annotated

with region parameters and permissions for each region (for example, read, write and re-

duce). Regions can be subdivided using a coloring, and this subdivision of regions forms

the basis of parallelism. Noninterference of parallel processes is checked at runtime at the

granularity of regions, which is significantly less overhead than per-access checking as in

software transactional memory (STM), but also significantly more expressive than a purely

static system. Because of noninterference, regions also indicate portions of a computation

that can be dynamically scheduled to run in parallel on different resource. The Legion

system has been tested on the Keeneland machine, a large CPU/GPU cluster, and appears

to do a good job of automatically utilizing available compute devices. However, the type

system appears to impose a heavy annotation burden on the programmer which may limit

is applicability in practice.

18

3. RELATED WORK

Harlan’s region system differs significantly from Legion’s in that it is primarily con-

cerned with representing pointer structures.

Deterministic Parallel Java also uses regions with an effect system to ensure determin-

ism in parallel programs [11]. While determinism is not an explicit goal of Harlan, the lack

of mutable data eliminates many sources of nondeterminism.

Region-based Software Virtual Memory (RSVM), like Harlan, uses regions as its unit

of data transfer [47]. RSVM allows arbitrary cross-region pointers by mapping region iden-

tifiers to memory locations at runtime using a lookup table. This coupled with transparent

swapping allows GPU kernels to work on data sets that do not fit in device memory.

The CPU-GPU Communication Manager (CGCM) manages the transfer of data be-

tween the host and device memories in terms of allocation units [46]. These allocation

units are similar to Harlan’s regions. Many of the communication optimizations in this

work would apply to Harlan. For example, Harlan already uses let lifting (Section 5.3.2)

and remote vector allocation (Section 5.3.4), which are similar to alloca promotion and glue

kernels from CGCM.

Regions in Harlan bear some similarity to places in X10, which can also be compiled

for the GPU [20]. In both systems, data is assigned to places or regions, but X10 fixes places

to a specific device and transfers between places are written explicitly.

Although not explicitly a form of RBMM, Compact Normal Form (CNF) is similar in

spirit to Harlan’s use of regions [86]. CNF is a modification to Haskell that allows data

to be completely evaluated into a contiguous region of memory in order to easily trans-

fer data structures between processes. This work is in the context of a Haskell program

distributed over a cluster, but is similar to Harlan’s need to produce compact data struc-

tures to transfer between CPU and GPU memory. One difference is that the programmer

is explicitly in control of CNF, while Harlan handles the assignment of data structures to

regions automatically and transparently.

19

3. RELATED WORK

3.5. Semantics

There has been relatively little work on formal semantics for GPUs. One example

is [37], which models the behavior of CUDA-C programs using the K semantic frame-

work [70], building on an existing semantics for C [22]. This system is closely related to

what is needed for Harlan because it models the whole program, including the fact that

memory references may be accessible by either the CPU or the GPU. The language of

CUDA-C is in some ways more expressive than Harlan, due to it exposing mutable mem-

ory to the programmer. Still, CUDA-C lacks Harlan’s advanced features such as first class

procedures.

One earlier work on the semantics of GPU languages focuses on modeling the Parallel

Thread Execution (PTX) virtual assembly language used by NVIDIA GPUs [32]. Unfor-

tunately, this work does not model the interaction of the GPU code with the host CPU

program. This interaction is the focus of the Harlan semantics work (Chapter 6).

Work on optimizing NESL includes a full operational semantics that includes cost mea-

sures [10]. This allowed the implementation of NESL to have provable space and time

bounds.

Other semantics for languages with parallelism are typically based on futures or fork-

join parallelism. The future construct allows programmers start a computation at one point

and time and request its value later [24]. This allows the language to execute the future in

parallel with the main execution. While this approach could scale to the large number of

threads in GPU parallelism, this seems unwieldy.

The semantics of region-based memory management has been explored in several

works. Tofte and Talpin [80] is on of the most comprehensive treatments. This work

describes a source language and its semantics without region annotations and then pro-

vides a translation from source terms to a region-annotated target language. The proof of

soundness proceeds by a relation between source and target language terms and shows

that evaluation of terms in the two languages preserves the relation.

20

3. RELATED WORK

Other treatments of regions have shown that they can implemented as a monad and

therefore be encoded in System F [26], [51]. Among other things, implementing regions

as monads enables their use in languages such as Haskell for more precise control over

resources like file handles.

The semantics and type system we will develop in Chapter 6 relies on a version of

separation logic [69] in order to reason about how the locations of regions evolve during

program execution. Harlan is mostly side-effect free, but one notable exception is in the

movement of regions. Separation logic is a powerful tool to reason about changes to the

heap.

21

CHAPTER 4

Exploring Regions with the Harlan Language

The Harlan programming language combines features from functional programming lan-

guages like Scheme and ML and targets data-parallel compute devices like GPUs. The

initial observation that led to the development of Harlan was that while the programming

languages we have now do a decent job of specifying computational code, they leave much

to be desired when it comes to managing the movement of data between disjoint device

memories. From the beginning, Harlan has managed the movement of data for the pro-

grammer. The language includes a rich set of features, including support for trees, first

class procedures and recursive kernels. The language is statically typed and uses a region

system to manage the movement of pointer-based data structures between the CPU and

GPU memory. Though the language is statically typed, it makes heavy use of type infer-

ence and thus explicit type annotations are rare. Due to its S-Expression syntax, program-

ming in Harlan feels similar to programming in Scheme, though there are some significant

semantic differences. The Harlan compiler compiles programs to C++ and OpenCL, which

allows Harlan to target both GPUs and CPUs, as well as other OpenCL-capable devices.

In this chapter, we see an overview of the language. We start by introducing the lan-

guage’s forms to show what tools are available to Harlan programmers (Section 4.1) and

then we explore the Harlan language in more detail. In particular, we will see how Har-

lan’s region system works through a series of examples (Section 4.2).

4.1. A User’s View of Harlan

In this section we will see how to write and understand programs in Harlan. We will

start with Harlan’s general purpose programming features (Section 4.1.1) and then focus

on parallel programming in Harlan (Section 4.1.2).

22

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

4.1.1. Basics. Harlan can be seen as a general purpose functional programming lan-

guage extended with data parallelism constructs. Harlan’s syntax resembles Scheme, and

in general programming in Harlan is meant to feel like programming in Scheme. There

are key differences, most important of which is that Harlan has a static type system that is

much more in the style of ML, although without type polymorphism.

Following in the Scheme tradition, Harlan has a relatively small number of primitive

forms that can be easily extended with macros. The grammar for Harlan’s core forms is

shown in Figure 4.1. Some of Harlan’s non-primitive forms are shown in Figure 4.2. The

Ident nonterminal represents an identifier such as a variable name and generally follows

Scheme’s rules for identifiers. The Literal nonterminal represents literal values such as

integers, floating point numbers, booleans, strings or characters. BinOps include arithmetic

and relational operators, such as +, -, < or =.

Programs in Harlan consist of a Module including some number of declarations, or

Decls. For standalone programs, as opposed to libraries, the module must define a function

called main. Such a declaration would look as follows:

(define (main)

...)

The main function takes no arguments and returns an integer. The returned integer be-

comes the program’s exit status, following C conventions. Successful programs should

return 0.

The remaining declaration types are used to import libraries, make an external func-

tion available to a Harlan program (Section 7.5), define macros (Section 4.1.3) and define

algebraic data types (Section 4.1.6).

Functions consist of one or more expressions, which include standard operations such

as displaying information to the user (print and println), conditional, variable binding,

procedure creation and application, arithmetic, et cetera.

Forms such as vector, iota and kernel are used to create and manipulate collec-

tions of data in parallel. We will see these in more depth in Section 4.1.2.

23

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

Module ::= (module Decl . . .)
Decl ::= (import Ident)

| (define (Ident Ident . . .) Expr . . . Expr)

| (extern Ident Type)

| (define-macro Ident (Ident . . .) MacroRule . . .)
| (define-datatype Ident Constructor . . .)

Expr ::= (assert Expr)

| (print Expr)

| (println Expr)

| (if Expr Expr)

| (if Expr Expr Expr)

| (begin Expr . . . Expr)

| (let-region Ident Expr)

| (let ((Ident Expr). . .) Expr. . . Expr)

| Literal

| Ident

| (vector Expr . . .)
| (vector-r Ident Expr . . .)
| (iota Expr)

| (iota-r Ident Expr)

| (vector-ref Expr Expr)
| (length Expr)

| (lambda (Ident. . .) Expr. . . Expr)

| (kernel ((Ident Expr). . .) Expr. . . Expr)

| (kernel-r Ident ((Ident Expr). . .) Expr. . . Expr)

| (match Expr (MatchPattern Expr. . . Expr). . .)
| (error!String)

| (BinOp Expr Expr)

| (Expr Expr. . .)
Type ::= Ident

| (ptr Type)

| (vec Type)

| (closure (Type. . .) -> Type)

| ((Type. . .) -> Type)

MacroRule ::= (SExpr SExpr)

Constructor ::= (Ident Type . . .)
MatchPattern ::= (Ident Ident . . .)

FIGURE 4.1. The grammar of Harlan’s core forms. Harlan programs consist
of a module which should define a function called main. The main function
is not necessary for libraries. Only Harlan’s primitive forms are listed here;
Harlan forms that are not listed here are implemented as macros or library
functions.

24

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

Expr += (reduce Expr Expr)

| (kernel* ((Ident Expr). . .)
| (map2d Expr Expr)

FIGURE 4.2. A selection of Harlan’s non-core forms. These are imple-
mented either as macros or functions in Harlan’s standard library. Many
of these are described in more detail in Section 4.1.2.

There are additional forms with the -r suffix that are used along with let-region to

gain some explicit control over regions. These are not used in general but can be used to

experiment with region assignment strategies before they are implemented in the compiler.

In general, regions and types are inferred and not something the programmer must

be overtly concerned with. Types, especially, become much more explicit when declaring

new data types and when interacting with foreign code.

4.1.2. Data Parallel Programming. Programmers indicate data parallel portions of

code with the kernel form. Kernels generally run on the GPU, but the language design

reserves the right to schedule a kernel on whatever device is the best fit for the kernel’s

computational requirements. The example below shows a simple vector addition kernel

written in Harlan.

(kernel ((x xs)

(y ys))

(+ x y))

In this example, xs and ys are both vectors of numeric values. The two vectors must have

the same length to pass them to this kernel. The kernel then launches one thread for each

of the elements in xs and ys, binding the variable x to an element in xs and y to and

element in ys. Each thread then performs the computation (+ x y). The result of the

kernel is another vector containing the element-wise sum of xs and ys.

Kernels can also be nested. The example below shows how to compute the outer prod-

uct of two vectors.

(kernel ((x xs))

(kernel ((y ys))

25

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

(let ((xs (vector 1 2 3 4))

(ys (vector 5 6 7 8)))

(kernel ((x xs)

(y ys))

(+ x y)))

=> (vector 6 8 10 12)

(A) Element-wise sum

(let ((xs (vector 1 2 3 4))

(ys (vector 5 6 7 8)))

(kernel ((x xs)

(y ys))

(* x y)))

=> (vector 5 12 21 32)

(B) Element-wise product

(let ((xs (vector 1 2 3 4))

(ys (vector 5 6 7 8)))

(kernel* ((x xs)

(y ys))

(* x y)))

=> (vector

(vector 5 6 7 8)

(vector 10 12 14 16)

(vector 15 18 21 24)

(vector 20 24 28 32))

(C) Outer product

FIGURE 4.3. Several simple example kernels and their output.

(* x y)))

The result is a two dimensional array, which is represented in Harlan as a vector of vectors.

Harlan’s kernel form effectively performs a parallel map (Scheme terminology) or

parallel zipWith (Haskell terminology). That is, all input vectors must match in size and

the result will have the same length. The body of the kernel is applied to corresponding

elements from each input array. Harlan provides a variant of kernel called kernel*

which performs outer products. This kernel* form is an equivalent shorthand for nested

kernels. For example, the kernel in Figure 4.3c could be written as follows:

(kernel ((x xs))

(kernel ((y ys))

(* x y)))

Figure 4.3 shows each of these kernels and the result of applying them to sample in-

puts.

26

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

In each of these examples there is no explicit movement of data. Harlan is responsible

for mapping the compute kernels onto the GPU or other compute devices, and for making

sure the requisite data is in the correct place at the correct time.

Harlan uses region-based memory management to automatically move data. The type

system and compiler are responsible for ensuring that related data structures are located

in a single contiguous region of memory. Thus, rather than explicitly serializing the data

structure before transferring it, the entire region can be transferred as a single operation.

Transferring entire regions at once enables Harlan to ensure the entire data structure is

accessible when it is needed. Because there is no way of referring to only a portion of

a region, each region and therefore and data the region contains must fit in GPU memory.

There is currently no way to transfer part of a region. Relaxing this restriction is an interest-

ing avenue for future work. Note that this constraint only applies to the regions accessed

by a given kernel. The program’s entire working set may exceed the GPU memory size

provided portions that are needed at once fit in GPU memory.

The kernel form is Harlan’s only primitive for describing parallelism, but a number

of additional parallel operators are provided for convenience. Harlan’s core kernel form

maps well onto what is natively supported in GPU hardware, and thus more accurately

exposes the cost of an operation to the programmer. Implementing additional operators in

terms of forms natively supported by the GPU make the operators amenable to compiler

optimizations, leading to the potential for higher performance.

One of these additional operators is kernel*, which we have already seen. Harlan’s

library also defines reduce, which is used to combine many values into one. The example

below shows a how to add up the numbers 1 through 5.

(reduce + (vector 1 2 3 4 5))

The reduction operator (+ in the example above) can be any associative and commutative

function of two arguments. While the compiler cannot statically enforce these properties,

the compiler relies on them to ensure determinism when parallelizing the reduction.

An additional non-primitive parallel operator is map2d, which is shown below.

27

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

(map2d (lambda (x) (+ 1 x)) xs)

In this example, xs must be a two dimensional array. The map2d operator applies the

supplied function to each element in the array. It is a shorthand for nested kernels.

These parallel operators are implemented as macros that expand into kernels. Harlan’s

macro system is discussed in more detail in the next section. This style of implementation

simplifies the compiler requiring it to process a smaller number of forms, and also allows

optimizations to apply more generally.

4.1.3. Macros. Harlan follows Scheme’s philosophy of defining a small core language

and then enabling more advanced syntactic forms with a powerful macro system. This

reduces the number of forms the compiler must handle, and also allows the language

to develop more rapidly. The resulting code is still efficient due to generally-applicable

compiler optimizations.

Harlan’s macro system is based on hygienic pattern-based rewrite rules, similar to

Scheme’s syntax-rules system [1]. In Harlan, macros are introduced using the define-macro

form. An example of a simple or macro is given below.

(define-macro or ()

[(_ a b)

(if a a b)])

Macro definitions include a name of the macro (or in this case), a set of optional keywords

(this example uses no keywords), and then a list of input and output patterns. This or

macro has only one input and output pair. The input pattern, (a b), matches expres-

sions like (or #t #f). The output pattern states that this input should be replaced by

(if #t #t #f).

Macros can include multiple patterns. For example, we could extend the or macro to

accept any number of arguments:

(define-macro or ()

[(_)

#f]

28

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

[(_ a)

a]

[(_ a b)

(if a a b)]

[(_ a b ...)

(if a a (or b ...))])

This macro has patterns that match zero, one, two and one or more arguments. The last

pattern shows an example of the ellipsis operator. On the input side, the ellipsis modifies

the previous pattern to match zero or more times. On the output side, it repeats the output

pattern as many times as the bound pattern variable matched. So, a macro application such

as (or #f #f #t #f) would expand into (if #f #f (or #f #t #f)). Notice that

macros expand in an outside-in fashion until all uses of a macro are eliminated.

The following example shows a cond macro that makes use of the keyword facility.

(define-macro cond (else)

((_ (else body ...))

(begin body ...))

((_ (test body ...))

(if test (begin body ...)))

((_ (test body ...) rest ...)

(if test (begin body ...) (cond rest ...))))

This macro is useful for a sequence of conditionals. It examples into a series of nested if

expressions. The else keyword is used to indicate what to do in case no other patterns

match. Declaring else as a keyword, by listing it after the cond macro’s name, indicates

that the else symbol should match literally, rather than binding it as a pattern variable.

An important feature of Harlan’s macro system is that it is hygienic. Macros often intro-

duce variable bindings, and without proper hygiene these variable bindings could cause

problems. Hygiene essentially means that bindings from outside of a macro invocation re-

main hidden from the macro, and variables bound by a macro expansion remain invisible

29

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

to the surrounding code. There are essentially two categories of hygiene errors. The first

is the most common, where a macro may introduce a binding that had already been used.

Consider the following variation of the or macro:

(define-macro or ()

[(_ a b)

(let ((t a))

(if t t b))])

This version evaluates whatever expression was match as a in a temporary variable. This

is useful if a included side effects, as without this explicit staging the side effects would

be evaluated twice. But consider the naive expansion of (let ((t #t)) (or #f t)).

This expression should evaluate to #t, but look at the naive expansion of this term:

(let ((t #t))

(let ((t #f))

(if t t t)))

In this version it is clear that it will return #f no matter what!

The second case is more subtle and needs a slightly longer example. Consider the

following Harlan module.

(module

(define (foo x)

(+ 1 x))

(define-macro double-foo ()

[(_ n) (foo (foo n))])

(define (main)

(let ((foo (lambda (n) (+ 2 n))))

(double-foo 0))))

30

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

This program includes a function, foo, which simply adds one to its argument. This func-

tion is referenced by the macro, double-foo, which expands into two successive calls to

foo. Yet, before the macro is applied in main the foo binding is shadowed by a local defi-

nition that adds two instead of one. A properly hygienic macro system should ensure that

the original foo function is used, as it is the one that was in scope when the macro was

defined. This property makes it easy to reason about macros in isolation, as it is harder for

surrounding code to affect their behavior.

Harlan ensures hygiene by carefully renaming variables during macro expansion. Al-

though Harlan does not support polymorphism, macros can often be used to emulate poly-

morphic functions.

4.1.4. Arbitrarily nested arrays. The only built-in array type in Harlan is the one di-

mensional vector type, which is an ordered collection of elements of a uniform type.

These elements, however, can be any other type, including other vectors. Thus, Harlan

represents N-dimensional arrays as vectors nested to depth N. Each nested vector can

have a different size, leading to arrays of nonuniform shape, or “ragged arrays.” This is in

contrast to languages like Accelerate [14] or Pochoir [78], where multidimensional arrays

must be rectangular. Figure 4.4 shows several examples of vectors that would be allowed

and disallowed by Harlan.

4.1.5. In-kernel recursion. Recursion is a staple of any functional programming lan-

guage, yet calling recursive functions from inside a kernel is explicitly disallowed by the

OpenCL specification.1 This is directly in conflict with the goal of allowing Harlan pro-

grams to use the same language inside kernels as outside. Harlan avoids OpenCL’s restric-

tion on recursive functions by creating an explicit stack and combining functions that may

recursively call each other into a single function that uses goto for control flow.

1At least one OpenCL implementation uses inlining to entirely remove function calls, leading to unbounded
code growth in the presence of recursive functions

31

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

(vector

1

(vector 2.0)

(vector (vector 3)))

(A) This is not allowed because
the elements do not have uni-
form types.

(vector

(vector 1 2 3)

(vector 4 5 6)

(vector 7 8 9))

(B) This is allowed because the
elements are all of the same
type. The data structure hap-
pens to be rectangular as well.

(vector

(vector 1)

(vector 1 2)

(vector 1 2 3))

(C) This is allowed because the
elements are all of the same
type. The data structure is not
rectangular.

FIGURE 4.4. Several examples of vectors in Harlan.

4.1.6. Algebraic data types. In the interest of supporting rich data structures, Harlan

supports algebraic data types. The define-datatype form is used to define custom

tree-like types. Below is an example of how λ -Calculus expressions might be represented.

(define-datatype Expr

(Variable int)

(Lambda Expr)

(App Expr Expr))

This defines a data type called Expr with constructors Variable, Lambda and App. The

match form is used to inspect instances of an ADT through case analysis. The example

below shows a single-step evaluator for λ -Calculus expressions.

(define (stepe e)

(match e

((variable n) (variable n))

((Lambda e) (Lambda e))

((app e1 e2)

(match e1

((variable n) (app (variable n) e2))

32

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

((Lambda e)

(subst e 0 e2))

((app e1 e2)

(app (stepe e1) e2))))))

4.1.7. First class procedures. While the existence of ADTs already gives Harlan high

expressiveness, the Harlan compiler uses them internally to implement first class proce-

dures. The lambda form creates new functions at runtime, and these functions can be

passed as data even between kernel and non-kernel code.

Harlan compiles first class procedures using defunctionalization [68]. All lambdas that

might flow to the same call site are combined into an ADT to describe the data contained

in the lambda’s closure and a dispatch function that applies the correct lambda body for

each closure variant. Since lambdas are statically typed, the type of the procedure is used

to determine which procedures may flow to a given call site. After all, two procedures of

different types cannot be called in the same location.

4.2. Region-based Memory Management in Harlan

Harlan’s rich data structures pose several implementation challenges. Often, data will

be created in CPU code, such as by reading from a file. The data must then be transferred

into the GPU memory. For regular structures, such as dense rectangular arrays, this is

a simple memory copy. For tree structures, such as arise with Harlan’s ADTs, finding

all nodes of the tree in memory involves traversing the whole tree. Furthermore, OpenCL

makes no guarantees about the stability of pointer values between kernel invocations, mak-

ing it impossible to have pointers between OpenCL memory objects.

We solve these problems in Harlan using a region-based memory management system.

The type inference process assigns data structures to regions. This guarantees that all el-

ements of a data structure can be easily located. Before invoking a kernel, Harlan copies

the regions containing each of the kernel’s data structures into the GPU memory, rather

than attempting to precisely move each individual element. This approach enables other

features as well, such as being able to allocate memory from the GPU.

33

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

It is worth noting that several of the limitations imposed by OpenCL, such as for-

bidding pointers to pointers and recursive functions, are not present in CUDA and thus

many of the implementation challenges facing Harlan would not exist if Harlan generated

CUDA instead of OpenCL. However, CPU/GPU systems are one particular instance of a

distributed system. Many of these challenges will arise in other distributed contexts, such

as when it is necessary to move complex data structures or procedures between nodes in

a cluster. We invite the reader to view Harlan’s region system as a set of techniques that

may apply to other distributed systems as well.

4.2.1. Region Inference. Region inference happens alongside type inference using an

approach similar to that of [80]. The Harlan type system separates types into value types

and region-allocated types. Value types are objects that are passed by value while region-

allocated types are represented as pointers into the heap. Region-allocated types carry

region parameters, which specify which region they are allocated from.

When the type inference algorithm encounters a region-allocated type, such as a vector,

it creates a new free region variable. In the course of type inference, the algorithm may

find new constraints requiring two values to be in the same region. This this cause, the

two types’ region variables are unified. At the end of type inference, the compiler replaces

the region unification variables with concrete region variables and binds these variables by

inserting let-region expressions. The let-region expression must enclose all uses of

a given region. Harlan does this by inserting let-region expressions at the entrance to

functions that will bind any regions free in the body that do not escape through the return

value.

Consider the following example:

(define (foo)

(let* ((v1 (vector 1 2 3))

(v2 (vector 4 5 6))

(v (vector v1 v2)))

(vector-ref v 1)))

34

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

The type inference algorithm may first determine that v1 is a vector of integers, and assigns

it the type (vec ρ1 int), meaning a vector of integers in region ρ1. In a similar way, the

type inference algorithm will assign v2 the type (vec ρ2 int).

Things are slightly more complicated for v. The type inference algorithm knows v

must be a vector. Furthermore, vectors must contain values of uniform type. Yet, v1 is

a vector in region ρ1 and v2 is a vector in region ρ2. Thus, the type inference algorithm

assigns v the type (vec ρ3 (vec ρ1 int)) and adds the constraint that ρ1 = ρ2.

The let* expression returns (vector-ref v 1), and we can see from the type of v

that this means the whole let* expression has type (vec ρ1 int), which incidentally

also becomes the return type of function foo.

Having inferred types and region constraints, the compiler now inserts a let-region

expression enclosing the body of foo. There are two distinct variables to consider: ρ1 and

ρ3. Because ρ1 escapes the function, it cannot be bound here. Thus, the compiler only binds

ρ3, assigning it a concrete region variable which we will call r1.

At this point, the intermediate representation of our function looks something like this:

(define (foo)

(let-region [r1]

(let* ((v1 (vector [ρ1] 1 2 3))

(v2 (vector [ρ1] 4 5 6))

(v (vector [r1] v1 v2)))

(vector-ref v 1))))

By convention, we use square brackets to denote region variable bindings and region

arguments. Thus, (vector [r1] v1 v2) explicitly indicates that the vector is allocated

from region r1.

One might ask why regions are stored as part of the type, rather than the runtime

representation of the object. Region references can be viewed as a pair of a region and an

offset into that region, so why not represent pointers as two words, one for the region and

one for the offset? Instead, pointers in Harlan are simply the offset, and the region portion

is determined by the type. The reason is that we would run afoul of OpenCL’s injunction

35

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

against multiple indirection if region references included a pointer to the region. We must

be able to find all pointer bases through explicit parameters, rather than discovering them

by traversing data structures.

The example above is not finished yet, as we have left the region inference variable ρ1

unbound! We solve this by allowing functions to be region-polymorphic. The caller will

supply a region to foo, which specifies where to store the return value. Thus, the final

region-inferred version of this function is:

(1)

(define (foo [r2])

(let-region [r1]

(let* ((v1 (vector [r2] 1 2 3))

(v2 (vector [r2] 4 5 6))

(v (vector [r1] v1 v2)))

(vector-ref v 1))))

Figure 4.5a shows how these vectors are grouped into regions. Figure 4.5b shows a di-

agram of the heap immediately before returning from foo, while Figure 4.5c shows the

heap right after returning. Notice that region r1 is destroyed, but there remains unreach-

able data in region r2. We do not currently perform garbage collection within a region,

but doing so would enable Harlan to reclaim this space.

4.2.2. Region-allocated Types. In general, Harlan prefers value types over region-allocated

types. This tends to lead to flatter data structures. Although multiple indirection is possi-

ble on the GPU, memory references are relatively expensive. Flatter data structures result

in less pointer chasing. There are three classes of types in Harlan that interact with the

region system: vectors, algebraic data types and closures.

Vectors are region allocated in part because they can be quite large and passing vectors

by value could be expensive. In the case of vectors of vectors, vector-ref could not be

a constant time operation, because the location of each of the child vectors would not be

known. Harlan requires the size of value types to be known statically, which is explicitly

36

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

r1

r2
v

v1 1 2 3

v2 4 5 6

(A) This figure shows how
the three vectors in (1) are
mapped onto regions. The
gray cells represent a header
containing information such
as the vector’s length.

r2 1 2 3 4 5 6

r1

(B) The layout of the heap just
before returning from func-
tion foo.

r2 1 2 3 4 5 6

x

(C) The layout of the heap
returning from function foo.
This assumes that the caller
has stored the return value in
a variable called x. Notice
that region r1 has been de-
stroyed, but v1 is still in r2

but unreachable.

FIGURE 4.5. Examples showing how data is assigned to and arranged
within regions.

not the case with vectors. Instead, vectors are represented by constant-size pointers to data

of unknown size in regions.

ADTs can be either region-allocated types or value types, depending on the structure

of the ADT. For example, in a type such as

(define-datatype Number

(Float float)

(Int int))

there is no reason to involve the region system at all. Harlan represents this type as a value

type, and the size is determined by the size of the largest variant. On the other hand, the

following type is affected by the region system.

(define-datatype IntList

(Cons int IntList)

(Null))

The reason is that the type is recursive. Naively trying to find the size of the largest variant

would never terminate, as the list can be of arbitrary length. Instead, the recursive refer-

ence to IntList is replaced by a reference to a region-allocated IntList. After region

inference, IntList becomes:

37

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

r1 r2

FIGURE 4.6. An example of a possible data structure if ADTs could take
multiple region parameters. The leftward nodes are in region r1 and the
rightward nodes are in region r2.

(define-datatype (IntList [r])

(Cons int (IntList [r]))

(Null))

An ADT requires a region parameter if it is immediately recursive, or if any of its fields

are region-allocated.

As a simplification, ADTs contain exactly zero or one region parameters. There are

no known technical reasons to prevent more than one region parameter, but one region

parameter does not seem overly restrictive and simplifies the implementation. In a more

general scheme, we could imagine, for example, a binary tree type where all the leftward

nodes are in one region and all the rightward nodes are in another:

(define-datatype (Tree [r1 r2])

(Node (Tree [r1]) (Tree [r2]))

(Leaf))

Figure 4.6 shows a visual representation of a binary tree where all the leftward nodes are

in one region and the rightward nodes are in another.

38

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

The final class of types that are affected by regions are closures.2 Closures themselves

are value types, but they may close over region-allocated data. In order to ensure the

application of the closure can find all of the data in its captured environment, the type of a

closure must include a region parameter as well. Consider the following:

(let ((v1 (vector 1 2 3))

(v2 (vector 4 5 6)))

(lambda (b i)

(if b

(vector-ref v1 i)

(vector-ref v2 i))))

Ignoring regions, this example evaluates to a procedure of type (bool int) -> int.

The procedure uses its boolean argument to decide which vector to return a value from.

Clearly, vectors v1 and v2 must live as long as the procedure closing over them does, and

we ensure this with the region system. One obvious way to do this would be to add as

many region parameters as necessary. The examples we have seen so far allow v1 and v2

to be in different regions, so assuming they are in regions r1 and r2, we could change the

type of the closure to be [r1 r2](bool int) -> int.

Now, consider another function:

(lambda (b i)

(if b i (* i 2)))

This evaluates to another procedure of type (bool int) -> int. It does not close over

any region-allocated data, and therefore does not need a region parameter. There is now

a problem, however, which is that these procedures both take arguments of the same type

and return a value of the same type but are not interchangeable solely because of differ-

ences in their environment. Closures are meant to abstract away the environment, and

yet here our programmer is left to wonder why seemingly equivalent functions cannot be

used in the same location.

2We will see in Chapter 5 that this is in part because closures are compiled into ADTs, which are themselves
affected by regions.

39

4. EXPLORING REGIONS WITH THE HARLAN LANGUAGE

For this reason, Harlan gives every closure exactly one region parameter. Thus, both

of these examples gain the type [r](bool int) -> int. The second function simply

ignores its region argument, but this fact is invisible to callers. In the case of the first

example, the fact that both vectors are captured by the same procedure means they are

now constrained to be in the same region. The region inference process ensures this by

allocating both vectors from the same region, rather than by inserting a copy operation

to move each vector into the same region. Also, the Harlan compiler allows additional

regions to appear in the argument types, meaning vectors that are passed into a procedure

(rather than captured) can reside in different regions.

In each of these three classes, notice that region parameters are not as much about

where the particular value resides, but rather where that value may point.

4.2.3. Flexibility in Region Assignment. These rules leave a great deal of freedom

for assigning objects to regions. At one extreme, all objects could be assigned to a single

region. This has obvious disadvantages. Since regions are used as the unit of data transfer

between the host and device memories, assigning all data to a single region means all of the

program’s data must be transferred at once. Furthermore, we do not do garbage collection

within regions, meaning large amounts of stale data would accumulate over the run on the

program.

At the other extreme, Harlan could try to assign each object to its own region. This

results in much more precise data transfer at the cost of having to start many more mem-

ory transfers. In our experience, the cost of launching more transfers is minor compared

to the cost of transferring more data than necessary (Section 7.6.1), but the ideal region as-

signment may lie somewhere in between these two extremes. Harlan’s region assignment

algorithm tends more towards assigning each object its own region.

One additional degree of freedom is in the placement of let-region expressions.

Currently, we insert let-region expressions at the entrance of each function. Alterna-

tively, the compiler could be more precise and insert let-region expressions deeper in

the function to further limit how long data remains allocated.

40

CHAPTER 5

Harlan Implementation

We will now turn our attention to Harlan’s implementation. Harlan is compiled from its

Scheme-like source language into C++ with OpenCL. Section 5.1 explores the compila-

tion in more detail. Special care is needed in handling ADTs, first class procedures and

using recursive functions from kernels. In Section 5.2, we will explore the details of the

region system’s implementation, as well as the rationale behind several design decisions

and tradeoffs. Section 5.3 looks at some of the optimizations that are performed by the

Harlan compiler. Finally, Section 5.4 shows how Harlan is able to provide more detailed

error handling than many other GPU programming languages.

5.1. Compilation

The Harlan compiler is written in Scheme as a Nanopass-style compiler [72]. Programs

are read in as S-Expressions and compiled into C++ programs that use OpenCL. We se-

lected OpenCL over CUDA as a compilation target due to its ability to support a variety

of devices, including CPUs and both NVIDIA and AMD GPUs. The OpenCL kernel code

is compiled once when the Harlan program begins execution, taking it off the critical path

for performance-sensitive portions of the program. Very little of the compiler and runtime

is specific to OpenCL, however, so a CUDA backend could be developed without much

trouble.

Harlan compiles to a relatively high level target language which simplifies some as-

pects of the compiler. For example, we will see in Sections 5.1.2 and 5.1.3 that some Harlan

constructs compile into C structs and unions. Obviously it is helpful to rely on an exist-

ing compiler’s support for these features rather than re-implementing it. There may be

some benefit in compiler to a lower-level target, such as LLVM, PTX or SPIR. These targets

41

5. HARLAN IMPLEMENTATION

would give more precise control over the machine and could possibly allow better low

level optimizations. For example, the code Harlan generates for region references seems

likely to defeat the C++ compiler’s attempts to analyze it.

The passes are roughly divided into a front end, a middle end and the back end. Fig-

ure 5.1 shows a detailed list of each of the passes in the compiler.

The front end checks to make sure the input program is well-formed, loads libraries

used by the program, performs hygienic macro expansion and, finally, does type and re-

gion inference. From that point, the middle end takes over with a series of passes that

progressively lower a Harlan program into a C++ program. This involves steps such

as converting match expressions into a chain of if-statements, inserting array bounds

checks, imposing kernel calling conventions, rewriting memory references as region refer-

ences, and converting Harlan kernels into top-level OpenCL kernels. The middle end is

also where some simple optimizations take place (Section 5.3). Finally, the back end gener-

ates a C++ program from the generated abstract syntax tree and invokes the C++ compiler

to produce an executable program.

5.1.1. Overview of Compiler Passes. We now take a more in-depth look at some of

the more interesting compiler passes.

5.1.1.1. Macro Expansion. One of the first things done by the compiler is to expand

macros into core syntax forms. The macro expander proceeds definition by definition

adding new macro definitions to its environment. Each of these macro definitions consists

of a number of match and rewrite patterns. The macro expander proceeds in the usual

outside-in fashion detecting macro invocations and then rewriting each matched pattern

according to its output template. In doing so, the expander must track where identifiers

come from and rename as necessary to preserve hygiene.

5.1.1.2. ADT Construction. This pass compiles the ADTs away from the language. The

compiler generates a C struct containing a tag field and a union of all of the variants for

the type. Each variant is also given a constructor function, which takes an argument for

each field in the variant and returns an instance of the correct type. The compiler desugars

42

5.
H

A
R

L
A

N
IM

P
L

E
M

E
N

T
A

T
IO

N

FIGURE 5.1. Harlan Compiler Passes.

43

5. HARLAN IMPLEMENTATION

match expressions into a chain of if statements that check the tag and bind the given

variables to each field in the variant.

5.1.1.3. Kernel Dimension Analysis. In order to facilitate other optimizations, Harlan’s

surface level kernel form is lowered into a version that explicitly gives the number of work

items in each dimension. This form more closely matches the way kernels function in

OpenCL, and also makes it easier to fuse nested kernels into a two dimensional kernel

(Section 5.3).

5.1.1.4. Kernel Flattening. OpenCL does not support spawning kernels from inside of

kernels, and thus nested kernels in the Harlan source must be removed. We do this by

leaving one of the kernels in a nest as a true kernel and converting the rest into sequential

code. The two obvious strategies are to leave either the outermost or innermost kernel

as a true kernel and sequentialize the rest. We choose to keep the outermost kernel and

sequentialize all of the inner kernels in order to have more code running on the GPU with

fewer round-trips to the CPU. This heuristic has worked well so far, but it may not always

be the best. Larger kernels provide the GPU with more code to use for hiding memory

latency, but they can also reduce performance by increasing register pressure [71]. More

analysis could be used to determine the best point in a kernel nest to keep parallel.

5.1.1.5. Explicit Region Reference Insertion. Up until this point in the compiler, all types

still maintain their region annotations. This phase replaces references to region-allocated

data with explicit reads and writes from a given offset in the appropriate region. After this

pass, region-allocated types are replaced with generic region pointers with casts inserted

as necessary. Regions that appear in function types are converted to additional parameters

so that these regions are available for references to that region within the function.

5.1.1.6. Kernel Hoisting. Kernels in OpenCL must be top-level forms, so this pass ex-

tracts kernel expressions from within the bodies of Harlan functions and lifts them to

top level. This process includes converting any free variables in the kernel body into

parameters to the kernel. At this point in the compiler, regions that a kernel references

are also treated as free variables. All the kernels in the program are lifted into a special

44

5. HARLAN IMPLEMENTATION

gpu-module form, which is compiled into an OpenCL program. This process is essen-

tially the same process as lambda lifting [48]. Any functions that a kernel might reference

are also included in the GPU module, enabling kernels to call other functions. OpenCL C

is similar enough to standard C that we can reuse much of the Harlan compiler’s backend

to generate the OpenCL program.

5.1.2. Algebraic Data Types. Once the frontend tasks like type inference are complete,

there are three main things the Harlan compiler must do to implement ADTs.

(1) Generate data types

(2) Generate constructors

(3) Desugar match expressions

These three things are accomplished during a single compiler pass called desugar-match.

Consider the following type definition:

(define-datatype Foo

(Foo1)

(Foo2 int int)

(Foo3 Foo)

After type inference, this type will have a region parameter, because it is recursive. The

type would then look something like this:

(define-datatype (Foo r)

(Foo1)

(Foo2 int int)

(Foo3 (Foo r))

The Harlan compiler lowers this definition into a tagged union, which ultimately be-

comes a struct of unions in C. A tag field is added to determine which variant the given

instance represents. The Harlan abstract syntax tree (AST) representation of this lower

level data type looks something like

(define-datatype Foo

(struct

45

5. HARLAN IMPLEMENTATION

(tag int)

(data (union

(Foo1 (struct))

(Foo2 (struct (f0 int) (f1 int))

(Foo3 (struct (f0 (region_ptr)))))))))

while the C version of the type looks like this:

struct Foo {

int tag;

union {

struct {} Foo1;

struct {

int f0;

int f1;

} Foo2;

struct {

region_ptr f0;

} Foo3;

} data;

};

Since fields are never accessed by name, they must be given generated names by the Har-

lan compiler.

The next component of ADT implementation is creating the constructors for each vari-

ant of a type. Constructors in Harlan are invoked like any function, which is convenient

because it allows to compiler to generate a function for each constructor. For each variant,

the compiler creates a function that takes the data associated with the variant and then

builds and returns an instance of the given type. Constructors for recursive ADTs will also

take a region parameter which will be used to allocate any child nodes.

46

5. HARLAN IMPLEMENTATION

The final piece is to remove all match expressions and replace them with equivalent

lower level expressions. Harlan converts match expressions into a sequence of nested

if expressions that each check the tag of an ADT instance. Under each matched variant,

the compiler inserts let bindings to extract the data from the ADT instance and make it

available to the body expression. Consider the following expression, which uses the Foo

data type we saw previously.

(match item

((Foo1) (do-something))

((Foo2 a b) (do-something-else a b))

((Foo3 itemˆ) (do-something-recursive itemˆ)))

This expression would expand into something similar to this:

(let ((tag (tag-of item)))

(if (= tag Foo1-tag)

(do-something)

(if (= tag Foo2 tag)

(let ((a (field (field item Foo2) f0))

(b (field (field item Foo2) f1)))

(do-something-else a b))

;; tag must be Foo3-tag at this point.

(let ((itemˆ (field (field item Foo3) f0)))

(do-something-recursive itemˆ)))))

This code snippet includes two new intermediate language forms, tag-of and field.

The field form accesses fields in a structure. For example, (field item Foo3) trans-

lates to item.Foo3 in C. The tag-of operator returns the tag of an ADT. In this case,

(tag-of item) is shorthand for (field item tag).

5.1.3. First Class Procedures. We implement first class procedures by defunctionaliza-

tion [68]. Lambda expressions of the same type are compiled into a single ADT combined

with a dispatch function. Each variant of the ADT represents each possible class of closure,

47

5. HARLAN IMPLEMENTATION

while the dispatch function contains the code associated with each variant. As an example,

consider the following program.

(module

(define (main)

(let ((c 2))

(let ((f (lambda (x) (+ 1 x)))

(g (lambda (y) (* c y))))

(println* (f 5) (g 5))))))

This program would be compiled into something like the following.

(module

(define-datatype lambda-int->int

(lambda-f)

(lambda-g int))

(define (dispatch-int->int closure a)

(match closure

((lambda-f)

(let ((x a))

(+ 1 x)))

((lambda-g c)

(let ((y a))

(* c y)))))

(define (main)

(let ((c 2))

(let ((f (lambda-f))

(g (lambda-g c)))

(println* (dispatch-int->int f 5)

48

5. HARLAN IMPLEMENTATION

(dispatch-int->int g 5)))))

Notice that we have constructed one new data type and one new function that together

are responsible for both lambda expressions. The lambda expressions themselves are

replaced by calls to the appropriate constructors, and applications are replaced by calls to

the generated dispatch function with the closure as an explicit argument.

The type system ensures that only closures of the correct type can be applied in each

location. We take advantage of this fact to group procedures according to their type.

One downside is that each generated data type is the size of the largest closure of a

given type. This has not yet caused problems for us, but if it did, we could mitigate the

impact by running a control flow analysis to more precisely limit which closures can flow

to each call site.

5.1.4. Recursive Functions in Kernels. OpenCL explicitly forbids the use of recursive

functions in kernels, and some OpenCL compilers fail to terminate in the presence of such

functions. Harlan works around this limitation by converting recursive procedure calls to

gotos with an explicitly managed stack.

We do this by generating a call graph and then using Tarjan’s algorithm [79] to find

the strongly connected components. As an example, Figure 5.2 shows the call graph for

a λ -Calculus interpreter written in Harlan. Each component represents a set of mutually

recursive functions. Harlan combines these into a single function in OpenCL, where each

Harlan function corresponds to a label within the large OpenCL function. Parameters to

each label are represented as local variables.

Care is needed with the return pointer, since OpenCL also forbids code pointers. In-

stead, we generate a label at each return point and give each of these labels a unique

identifier. We then generate a special return label, which jumps to the correct return point

based on the return identifier on the stack. This is analogous to the way we worked around

OpenCL’s restriction on pointers to code in our implementation of first class procedures.

We also considered implementing recursion by translating sets of mutually recursive

functions into continuation passing style. This approach would likely have led to too many

49

5.
H

A
R

L
A

N
IM

P
L

E
M

E
N

T
A

T
IO

N

_kernel

lookup

closure lambda_123

lambda_124

dispatch_126

erroreval extended-env

app Lambda variable empty-env lambda_122

main

FIGURE 5.2. The call graph for a λ -Calculus interpreter written in Harlan. The SCCs are indicated by squares,
while ovals represent functions and arrows indicate that a function may call another. Note that most of these
functions are generated internally by the compiler.

50

5. HARLAN IMPLEMENTATION

(module

(define (main)

(let* ((add1 (lambda (x) (+ 1 x)))

(add2 (lambda (x) (add1 (add1 x)))))

(kernel ((i (iota 1)))

(add1 i)))

0))

FIGURE 5.3. An example of false recursion.

continuations being allocated from the same region, so instead we opted for an explicitly

managed stack.

5.1.4.1. False Recursion. Due to the way Harlan implements first class procedures, the

generated code may include recursive functions even if the source level program is not

recursive. The reason is that the code for all closures of the same type become a single

function. If any of these closures call another closure of the same type, then the generated

dispatch function will appear recursive. Figure 5.3 shows a program that triggers this

behavior. This makes having compiler support for recursion all the more important, as it

may not be obvious or even under the programmer’s control that a program would appear

recursive to OpenCL. Alternatively, more precise control flow analysis could eliminate

most of these cases.

5.2. Implementation of the Regions System

Harlan’s pointer structures are all written in terms of regions. Conceptually, a heap-

allocated object, like a vector or linked list, is represented as a pair of a region and an offset

into that region. The region portion is known statically, and so all Harlan heap objects are

represented at runtime simply as offsets into a region.

Regions are represented as a block of memory that consists of a header followed by

program data. The header stores the current size of the region and an allocation pointer,

which points to the end of the allocated data. When data is allocated from a region, the

allocation pointer is simply incremented by the size of the object being allocated, and the

original value is returned. If the allocation pointer is greater than the size of the region, the

Harlan runtime resizes the region to hold the new allocation.

51

5. HARLAN IMPLEMENTATION

Since all heap-allocated data is accessed relative to a region, these regions must be pro-

vided to functions that either accept arguments in regions or return a region-allocated ob-

ject. In this case, the Harlan compiler inserts an extra parameter for each region a function

uses. This is similar to implementing type polymorphism by passing type descriptors [19].

When the region is resident in CPU memory, it may be resized if the allocation pointer

moves beyond the end of the region. Harlan currently uses a doubling policy to resize

regions when there is not enough room for the requested allocation.

Region resizing is not possible when allocating from within kernels, and in this case

the kernel would simply fail with an error indicating that the region did not have enough

space available. Future versions of Harlan may choose to resize the region on the CPU side

and then retry the kernel to automatically recover from the error.

The region’s backing OpenCL buffer may be left unallocated during most of the pro-

gram, and instead be allocated immediately before the region is needed on the GPU. With

this approach, the backing buffer can be freed as soon as the region is no longer live on the

GPU as well. Our experience is that allocating and deallocating OpenCL buffers is cheap

relative to the cost of transferring the contents of the region between host and device mem-

ory, so this technique enables Harlan programs to work with larger working sets, provided

not all regions are needed at once by a kernel.

5.3. Optimizations

The Harlan compiler currently performs several simple optimizations. These optimiza-

tions let us keep Harlan fairly simple as a language yet still get good performance. We

focus on optimizations that affect the structure of kernels and rely on the underlying C++

compiler to perform its standard set of optimizations.

5.3.1. Kernel Fusion. There are two types of fusion optimizations which Harlan per-

forms. The first is applicable when one kernel receives its inputs directly from another, as

in the code snippet below.

(kernel ((x (kernel ((i is)) (+ i 1))))

52

5. HARLAN IMPLEMENTATION

(* 2 x))

Here, the two kernels can be combined into a single kernel:

(kernel ((i is))

(let ((x (+ i 1)))

(* 2 x)))

Eliminating the intermediate kernel improves performance by providing more opera-

tions for the GPU to use to hide latency and also avoids allocating memory to store the

result of the first kernel. A similar optimization is applied in the case of reductions over

kernels, such as in:

(reduce + (kernel ((x xs) (y yx)) (* x y)))

In this case, the compiler would eliminate the temporary result that stores the product of

xs and ys, and instead compute this product while performing the reduction.

A second form of fusion combines two kernels where one is immediately nested inside

another into a two-dimensional kernel. This transformation is applicable to cases such as

the following fragment from a simple matrix multiplication program.

(kernel ((row A))

(kernel ((col (transpose B)))

(dot-product row col)))

5.3.2. Let Lifting. Let lifting takes advantage of the fact that data in Harlan is im-

mutable and thus tries to lift computations as high as possible to prevent the computa-

tions from being needlessly repeated. This is effectively a form of loop-invariant code

motion [17]. Lifting computations can transform the code so that more kernels are adja-

cent to each other, thus increasing the number of kernels that can be fused together. Even

in cases where more kernels cannot be fused, let lifting can improve memory transfers by

allowing data that is reused by several successive kernels to remain resident on the GPU.

This is especially true when combined with the lazy data transfer optimizations.

53

5. HARLAN IMPLEMENTATION

5.3.3. Lazy Data Transfer. Regions are used as the unit of data transfer between host

and device memories. At a basic level, Harlan migrates the entire contents of each region

used by a kernel to the device memory before executing the kernel, and upon exiting the

kernel Harlan migrates all regions back to the host memory. Several obvious optimizations

are possible. First, region transfers can be initiated lazily. Regions needed by a kernel

are migrated to the device memory as before, but they remain there until the host code

references a portion of that region. Second, regions consist of some amount of live data

followed by unallocated space. Because the portion of the region beyond the allocation

pointer is not meaningful, Harlan only needs to transfer the portion of the region up to

the allocation pointer. Returning a region to the host memory is done in two transfers.

The first reads the region header to determine the most up to data value of the allocation

pointer, since kernels may have allocated from this region. Then, the remaining portion

of the region up to the new allocation pointer is transferred. This approach does incur a

slight overhead in initiating two transfers, but in our experience this overhead is negligible

in light of the savings from not transferring useless bits. These optimizations together yield

a significant improvement in performance.

Furthermore, because data in Harlan is immutable, it is possible for the runtime system

to establish fairly tight bounds on the portions of a region that might have changed. A

more advanced version of lazy data transfer could take advantage of this to more precisely

transfer only the changed portions of a region.

5.3.4. Remote Vector Allocation. In order to avoid unnecessary round trips between

the CPU and GPU memory, Harlan uses a different vector allocation path when allocating

on the CPU from a region that is on the GPU. This is particularly important before execut-

ing a kernel, as space for the kernel’s results must be allocated before launching the kernel.

Originally the modification to the allocation pointer would trigger a region move from the

GPU to the CPU. Instead, Harlan launches a small kernel that performs the allocation on

the GPU, thereby allowing the region to remain on the GPU.

54

5. HARLAN IMPLEMENTATION

5.4. In-kernel Error Handling

In-kernel error handling is accomplished by adding an implicit argument to kernels,

affectionately known as the danger vector. The danger vector includes a boolean entry for

each type of error that might occur in a kernel, such as an allocation failure or an index out

of bounds error. When a kernel thread encounters an error, it sets the appropriate entry

in the danger vector to true. Upon exiting the kernel, the host code checks if any errors

occurred and reports them to the user.

Several other strategies are possible which each have different implications for error

reporting granularity and performance. Currently we have a small, predefined set of pos-

sible errors. Instead, each point in the kernel that can produce an error could be assigned

a unique error identifier. This means Harlan could report the exact location of the error

rather than simply reporting a generic class of error. This comes at the cost of a larger

danger vector.

At the extreme end, the danger vector could include an entry for each kernel thread.

Under this system, if a kernel encounters an error, the erroneous thread would fill its entry

in the danger vector with an identifier for the error that occurred. This has the effect of

providing very detailed information about kernel failures by showing which threads failed

and why. We initially implemented this approach, but the memory overhead of having

one entry in the danger vector for each thread led to an unacceptable performance penalty.

This strategy may still be useful as an option for debugging applications.

5.4.1. Recovering from allocation failures. One extremely common error is not hav-

ing enough space available in a region to allocate the results of a kernel. Harlan uses two

strategies to handle these conditions. The first is to attempt to reserve enough space ahead

of time for the results of a kernel, while the second is to automatically restart kernels with

a larger region.

In the first case, many kernels have very predictable size requirements. Consider the

kernel below.

(kernel ((i (iota 1000)))

55

5. HARLAN IMPLEMENTATION

(kernel ((j (iota 1000)))

(* i j)))

This kernel produces a 1000×1000 array of integers, which can easily be seen by inspecting

the kernel arguments. Since Harlan compiler can, in this case, determine the dimensions

of the result statically, the compiler could reserve enough free space to ensure all alloca-

tions within a kernel complete successfully. This technique obviously cannot be applied in

general, as kernels may allocate space based on arbitrary computation. Harlan currently

does not implement this technique at all, but it could be added with minor changes to the

compiler.

On the other hand, Harlan implements a dynamic checkpoint and retry strategy. The

second method relies heavily on the fact that data in Harlan is immutable. Before launch-

ing the kernel, Harlan saves the allocation pointer of each of the regions written by a kernel.

If the kernel completes unsuccessfully due to a lack of available space in the region, Harlan

can simply roll the allocation pointer back to its previous value, increase the size of the re-

gion and try the kernel again. This checkpoint and retry process is introduced by the insert-

transactions and remove-transactions passes (Figure 5.1). Note that these passes take place

after nested kernels have been converted to sequential code by the remove-nested-kernels

pass, so the checkpoint and retry process can only happen surrounding true kernels. This

is necessary because trying to enlarge a region inside of a kernel runs into the same issue

of not being able to allocate from the GPU.

56

CHAPTER 6

Region Semantics for Multi-memory Systems

This thesis claims that region-based memory is an effective way of enabling high-level

language features when targeting machines with multiple disjoint memories. There is in-

cluded within this an implicit safety claim, which stated vaguely is that programs should

do what they are supposed to do. This chapter will make this safety claim more explicit

by investigating a formal semantics for a representative model of the Harlan language. In

this we will see what safety guarantees a language such as Harlan can provide as well as

what is required of the type and region system to ensure these safety guarantees.

One key aspect of Harlan’s region system is that regions move between memory spaces.

This leads to an important safety consideration—programs must only access data in a re-

gion if that region is in the currently active memory space. This is the primary safety

property that we will prove in this chapter.

The general approach will be to implement an interpreter for a representative subset

of Harlan. This interpreter will then be used to derive an abstract machine. This machine

will form the basis for an operational semantics that will then be used to explore Harlan’s

region system.

There are several tasks included as part of developing a semantics:

(1) Implement an interpreter for a core fragment of Harlan (Section 6.2.1)

(2) Derive an abstract machine from the interpreter (Section 6.2.2).

(3) Develop a static semantics for Harlan that describes the type and region rules (Sec-

tion 6.4).

(4) Define and prove a meaningful safety property (Section 6.5).

57

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

The type system developed in Section 6.4 relies heavily on separation logic to simplify the

handling of region locations as the execution of a program progresses, so we include an

overview of separation logic in Section 6.3.

6.1. Core Harlan

Rather than consider the semantics of the whole Harlan language, we will consider

a small subset. We are primarily concerned with Harlan’s region system as it relates to

multiple memory locations. Thus, our language will consist of a small functional language

augmented with the ability to allocate and read from regions, move regions between loca-

tions, and move computation between locations. The system considered here includes two

locations, called CPU and GPU, but this system could easily generalize to more memory

locations.

While regions do not generally appear in full Harlan source language, Core Harlan

explicitly mentions regions. Core Harlan represents an intermediate language in which

the compiler has already inserted region annotations as needed. The semantics presented

in this chapter defines a set of invariants that Harlan’s type and region inference algorithm

must maintain.

Figure 6.1 shows the syntax for the fragment of Harlan we will consider. The ()term is

read as “unit” and constructs a value. This is similar to a base value from the Simply Typed

Lambda Calculus [33]. The x term is a variable reference, while (e1 e2) represents the ap-

plication of e1 to e2. References are created by (ref r e) allocates space from region r and

stores the value of e in this location. The result is a pointer that can be used in (deref r e)

to read a value from the region. The (push r) expression moves a region from the CPU

to the GPU (or leaves the region on the GPU if it is already there) and (pull r) moves a

region from the GPU to the CPU (similarly leaving the region unchanged if it is already on

the CPU). There is not a similar construct to push and pull in the Harlan source language,

but these operations are inserted by the compiler. Regions are created with let-region,

where (let-region r e) creates a region r which is available during the evaluation of

the body, e.

58

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

e ::= ()

| x

| (spawn e)

| (let-region r e)

| (e1 e2)

| (ref r e)

| (deref r e)

| (push r)

| (pull r)

| (lambda l [r : l . . .] (x) e)

l ::= CPU | GPU

FIGURE 6.1. The syntax for Core Harlan. This is a small model of the Har-
lan language which we will use to study its semantics. The e non-terminal
represents Harlan expressions. Variables are indicated by x, while r indi-
cates a region variable. l represents a location, either CPU or GPU.

The lambda construct is rather more complicated than traditional lambdas. The first

argument, l, specifies what location the resulting function may be called from. Functions

labeled as GPU may be called from the CPU as well, but CPU-labeled functions may only be

used on the CPU. The reason for this distinction is that some operations, such as push and

pull, may only be used on the CPU. The next list of r : l pairs specifies which regions the

function will use, and what location the function expects them to be in. Finally, x specifies

the name of the formal parameter and e specifies the body of the function.

Core Harlan uses spawn to perform a computation on the GPU. The spawn opera-

tion represents spawning a kernel, and like kernels in Harlan, spawn expressions may

be nested. In this case, only the outermost spawn expression changes the computation

location; any nested spawns remain on the GPU. Unlike kernels in Harlan, there is no

parallelism involved with spawn. This may seem surprising, but the goal of the semantics

is to show Harlan is safe with respect to moving data between different memory spaces,

which is independent of the parallelism associated with either device.

Several features of the full Harlan language, such as ADTs and vectors, are not in-

cluded in this core fragment in order to simplify the reasoning about the semantics. These

can be emulated with the constructs included in Core Harlan, or easily added if needed.

59

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

(define (eval-harlan e env)

(match e

(’() ’())

(x #:when (symbol? x)

(lookup x env))

(‘(lambda ,l [(,r* : ,l*) ...] (,x) ,e)

‘(closure ,x ,env ,e))

(‘(,e1 ,e2)

(match-let ((‘(closure ,x ,envˆ ,e) (eval-harlan e1 env))

(arg (eval-harlan e2 env)))

(eval-harlan e (extend envˆ x arg))))))

FIGURE 6.2. The baseline interpreter for the λ -Calculus. Procedures
(lambda) have been extended with location and region requirement anno-
tations that are part of Core Harlan but not standard λ -Calculus.

6.2. Operational Semantics

We will now develop an operational semantics for Core Harlan. We start with an inter-

preter and then derive an abstract machine. Starting with an interpreter makes it easy to

test and experiment with the language, ensuring the programs behave as expected. Once

this is completed, we will use the interpreter to derive an abstract machine. The abstract

machine consists of a machine configuration combined with rules for how to derive the

next configuration. The resulting machine will have the property that the transition func-

tion is a total and non-recursive function, a fact which will prove especially for mechaniz-

ing the type safety proof (Section 6.7).

6.2.1. Developing the interpreter. We start with a standard “three-line interpreter”

for the λ -Calculus written in Racket [25]. This interpreter is shown in Figure 6.2.

The lookup and extend functions are used to find values in the environment and add

new values to the environment. One possible implementation of these two procedures is

given below.

(define (lookup x env)

(cdr (assq x env)))

(define (extend env x value)

60

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

(cons (cons x value) env))

Obviously, this isn’t quite a three line interpreter, as it also includes a match clause for

unit expressions. Otherwise, it is a standard interpreter for the λ -Calculus. The variable

line simply pulls the appropriate value out of the runtime environment using lookup.

We have omitted the error-handling code here; this interpreter assumes programs will

not try to access unbound variables. The lambda line just captures the current runtime

environment and the body of the procedure in a closure data structure. Notice that we

ignore the location and region requirement annotations. These are needed only for type

checking but are not used at runtime. The type system is responsible for ensuring that the

procedure’s region requirements are always met, but a more robust interpreter could check

these dynamically for better debugging support.

The interpreter as it stands now does not support the majority of Core Harlan. The

remaining forms affect the region system, so we will extend the interpreter with stores.

One key difference is that we have two stores, s1 and s2, which serve as the primary

and alternate stores. The primary store is the store that is active on the currently executing

device, while the alternate store contains the data on the alternate device. This will become

more clear when we see how the interpreter handles the spawn form. Figure 6.3 shows the

interpreter extended with stores and also a location variable that indicates which device

is currently executing. Because stores are mutated during program execution, we must be

careful with the order of evaluation and thread the stores through so that effects will not be

lost. Notice that the interpreter now returns three values instead of just one. The first is the

value to which the first expression was evaluated. The second and third are the updated

primary and alternate stores.

We can now add match classes each of the missing forms in turn. We will start with

spawn:

[‘(spawn ,e)

(match loc

[’CPU (let-values ([(v s2 s1) (eval-harlan e env ’GPU s2 s1)])

61

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

(define (eval-harlan e env loc s1 s2)

(match e

(’() (values ’() s1 s2))

(x #:when (symbol? x)

(values (lookup x env) s1 s2))

(‘(lambda ,l [(,r* : ,l*) ...] (,x) ,e)

(values ‘(closure ,x ,env ,e) s1 s2))

(‘(,e1 ,e2)

(match-let*-values

([(‘(closure ,x ,envˆ ,e) s1 s2)

(eval-harlan e1 env loc s1 s2)]

[(arg s1 s2)

(eval-harlan e2 env loc s1 s2)])

(eval-harlan e (extend envˆ x arg) loc s1 s2)))))

FIGURE 6.3. The interpreter from Figure 6.2 modified to thread store and
location variables throughout the execution.

((r1 . (v0 v2 v3))

(r2 . (v4))

(r3 . ())

(r4 . (v5 v6 v7 v8)))

FIGURE 6.4. An example store.

(values v s1 s2))]

[’GPU (eval-harlan e env loc s1 s2)])]

Spawn simulates executing a kernel, but without the parallelism from Harlan’s kernel

form. Like kernel in Harlan, spawn can be nested. The spawn form indicates code

should execute on the GPU, but if the program is already executing on the GPU then

spawn simply passes through the evaluation of its subexpression. This is the reason for

matching on loc. Notice that in the CPU case, where the execution switches from the CPU

to the GPU, the two stores are swapped on entrance to the recursive call to eval-harlan

and swapped again on its return.

The remaining forms directly interaction with the stores. We will represent stores as an

association list from region identifiers to a list of values. The contents of the region itself

are indexed by a number that can be thought of as the memory address. Figure 6.4 gives

an example of what a store may look like.

62

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Given this representation, the let-region form simply adds an empty region to the

primary store:

[‘(let-region ,r ,e)

(eval-harlan e env loc (add-new-region r s1) s2)]

The definition of add-new-region can be seen in Figure 6.5.

Values are added to the store using ref. In this case, the interpreter first evaluates the

subexpression to a value and then the alloc-in-region helper defined in Figure 6.5

appends the value to the appropriate region. The return values from alloc-in-region

include an index which the interpreter saves in a label that is returned as the value of the

ref expression. The code for the ref case is given below.

[‘(ref ,r ,e)

(let-values ([(v s1 s2) (eval-harlan e env loc s1 s2)])

(let-values ([(s1 i) (alloc-in-region r v)])

(values ‘(label ,i) s1 s2)))]

For the symmetric operation, deref, the interpreter first evaluates its argument to a

label and then uses this to lookup the resulting value from the store. This is shown below.

[‘(deref ,r ,e)

(match-let-values ([(‘(label ,i) s1 s2)

(eval-harlan e env loc s1 s2)])

(values (lookup-store s1 r i) s1 s2))]

Push and pull are similar, so we will consider them together. These simply return (),

but their importance is in the effect of moving a region between the primary and alternate

store. The push and pull cases are shown below.

[‘(push ,r)

(match loc

[’CPU (let-values ([(s1 s2) (move-region r s1 s2)])

(values ’() s1 s2))]

[’GPU (error ’eval-harlan

63

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

"Push can only be used on the CPU")])]

[‘(push ,r)

(match loc

[’CPU (let-values ([(s1 s2) (move-region r s1 s2)])

(values ’() s1 s2))]

[’GPU (error ’eval-harlan

"Pull can only be used on the CPU")])]

Unlike our other cases, this case does some error checking. The reason is that in keeping

with our model of CPU/GPU computing, region movement can only be initiated on the

CPU. In the CPU case, we simply use move-region (defined in Figure 6.5) to move the

given region between the two stores. In the case of push, the interpreter moves the region

from the primary store to the alternate store. Likewise, for pull, the interpreter moves the

region from the GPU store to the CPU store.

Having discussed each of these cases individually, we now present the complete inter-

preter in Figure 6.6.

6.2.2. Developing the abstract machine. Given our interpreter, we can derive an ab-

stract machine through a relatively straightforward series of transformations. The gist of

these transformations is that we first need to convert the interpreter to CPS and then re-

place all of the continuations with explicit data structures. We shall elide most of these

details and instead focus on the finished product in more formal notation.

The abstract machine has four different kinds of configurations, which are:

(1) 〈v,s1,s2〉

(2) ⊥

(3) 〈e,ρ,s1,s2,k, l〉

(4) 〈k,v,ρ ,s1,s2, l〉

Configuration (1) is simply a value, meaning the machine terminated with the given

result. Possible values are shown in Table 6.1. The value machine configuration includes

two stores, s1 and s2 because v may contain references into the source. Being able to type

64

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

(define (add-new-region r store)

(cons (list r) store))

(define (alloc-in-region r store value)

(if (eq? r (caar store))

(values (cons (append (car store) (list value))

(cdr store))

(length (cadr store)))

(cons (car store)

(alloc-in-region r (cdr store) value))))

(define (lookup-store s r i)

(list-ref (cdr (assq r s)) i))

(define (move-region r s1 s2)

(let ((r (assq r s1))

(s1 (let loop ((s1 s1))

(if (eq? (caar s1) r)

(cdr s1)

(cons (car s1) (loop (cdr s1)))))))

(values s1 (if r (cons r s2) s2))))

FIGURE 6.5. Region manipulation functions.

assign a type to these values requires a store that is consistent with the type, so we include

a store in the machine configuration. Configuration (2) means an error occurred, such as

attempting to apply a non-procedure. We will refer to type (3) as an expression config-

uration, which contains an expression to be evaluated. Here, e is the expression under

evaluation, ρ is a lexical environment mapping variable names onto values. The active

store is given by s1, which maps region names onto regions, which in turn map labels onto

values. Similarly, s2 represents the alternate store, which is the memory on the device that

is not currently computing. The machine exchanges s1 and s2 when spawn changes the

compute location. This is the behavior we saw in the spawn case of the interpreter and

will see again in Table 6.3. Finally, k gives the continuation to be applied once e has been

evaluated to a value and l is the location where evaluation is currently taking place.

Configuration (4) is a continuation configuration, which contains a continuation and

the value (v) to which it is applied. The variables k, ρ , s1, s2 and l are as they were for

expression configurations.

65

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

(define (eval-harlan e env loc s1 s2)

(match e

(’() (values ’() s1 s2))

(x #:when (symbol? x)

(values (lookup x env) s1 s2))

[‘(spawn ,e)

(match loc

[’CPU (let-values ([(v s2 s1)

(eval-harlan e env ’GPU s2 s1)])

(values v s1 s2))]

[’GPU (eval-harlan e env loc s1 s2)])]

[‘(let-region ,r ,e)

(eval-harlan e env loc (add-new-region r s1) s2)]

[‘(ref ,r ,e)

(let-values ([(v s1 s2) (eval-harlan e env loc s1 s2)])

(let-values ([(s1 i) (alloc-in-region r s1 v)])

(values ‘(label ,i) s1 s2)))]

[‘(deref ,r ,e)

(match-let-values ([(‘(label ,i) s1 s2)

(eval-harlan e env loc s1 s2)])

(values (lookup-store s1 r i) s1 s2))]

[‘(push ,r)

(match loc

[’CPU (let-values ([(s1 s2) (move-region r s1 s2)])

(values ’() s1 s2))]

[’GPU (error ’eval-harlan

"Push can only be used on the CPU")])]

[‘(push ,r)

(match loc

[’CPU (let-values ([(s2 s1) (move-region r s2 s1)])

(values ’() s1 s2))]

[’GPU (error ’eval-harlan

"Pull can only be used on the CPU")])]

(‘(lambda ,l [(,r* : ,l*) ...] (,x) ,e)

(values ‘(closure ,x ,env ,e) s1 s2))

(‘(,e1 ,e2)

(match-let*-values

([(‘(closure ,x ,envˆ ,e) s1 s2)

(eval-harlan e1 env loc s1 s2)]

[(arg s1 s2)

(eval-harlan e2 env loc s1 s2)])

(eval-harlan e (extend envˆ x arg) loc s1 s2)))))

FIGURE 6.6. The full interpreter for Core Harlan.

66

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Value Description
() Unit
(closure x ρ e) A closure. The formal parameter name is given by x, the

captured environment is ρ and the body of the procedure is
e.

(label i) A memory address which points into a particular region.

TABLE 6.1. The syntax of values.

Error Configuration
⊥ ⊥

Value Configuration
〈v,s1,s2〉 〈v,s1,s2〉

TABLE 6.2. Core Harlan transition function (Error and Value configurations).

6.2.3. Transition Function. Now that we have seen the syntax of Core Harlan and the

associated values and machine configurations, we can develop the operational semantics.

We use a small step operational semantics [66]. One key feature is that the step function

we develop here is total. This is to aid in developing a mechanized proof (Section 6.7).

Tables 6.2 to 6.4 give the definition of the relation M M′, meaning that machine configu-

ration M steps to machine configuration M′.

These rules make use of a number of auxiliary functions and notational shorthands. We

treat runtime environments, ρ , as partial functions from variable names to values. Thus,

ρ(x) corresponds to (lookup x ρ) in the interpreter and dom(ρ) gives the set of names

that are defined in the environment. Environments are written as a list of [x : v] pairs but

are extended by simply juxtaposing pairs, as in [x : v]ρ .

Stores are treated similarly. Stores are partial functions from region names to regions,

which in turn are partial functions that map integers from 0 to some n to values. We use

s(r) to return the entire region r and s(r, i) as a shorthand for s(r)(i). Like environments,

stores are written as a list of [r : v . . .] pairs but are be concatenated using the :: operator. As

with environments, we use dom(s) to get the set of region names included in the store. We

use the notation s−{r} to denote the restriction of s, which is a new store that is identical

to s except without r in its domain.

67

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Expression Configurations
〈(),ρ,s1,s2,k, l〉 〈k,(),ρ ,s1,s2, l〉
〈x,ρ,s1,s2,k, l〉 〈k,ρ(x),ρ,s1,s2, l〉

if x ∈ dom(ρ)
 ⊥ otherwise

〈(spawn e),ρ ,s1,s2,k,CPU〉 〈e,ρ ,s2,s1,Unspawn(k,CPU),GPU〉
〈(spawn e),ρ ,s1,s2,k,GPU〉 〈e,ρ ,s1,s2,Unspawn(k,GPU),GPU〉
〈(e1 e2),ρ ,s1,s2,k, l〉 〈e1,ρ,s1,s2,Rator(e2,k), l〉
〈(ref r e),ρ,s1,s2,k, l〉 〈e,ρ ,s1,s2,Alloc(r,k), l〉
〈(deref r e),ρ,s1,s2,k, l〉 〈e,ρ ,s1,s2,Deref(r,k), l〉
〈(push r),ρ,s1,s2, l,CPU〉 〈k,(),ρ ,s1 −{r},s2 :: s1(r),CPU〉

if r ∈ dom(s1)
 〈k,(),ρ ,s1,s2,CPU〉

if r /∈ dom(s1) and r ∈ dom(s2)
 ⊥ otherwise

〈(pull r),ρ,s1,s2, l,CPU〉 〈k,(),ρ ,s1 :: s2(r),s2 −{r},CPU〉
if r ∈ dom(s2)

 〈k,(),ρ ,s1,s2,CPU〉
if r /∈ dom(s2) and r ∈ dom(s1)

 ⊥ otherwise
〈(let-region r e),ρ,s1,s2,k, l〉 〈e,ρ , [r : ·] :: s1,s2,Dealloc(r,k), l〉
〈(lambda l [r : l . . .] (x) e),ρ ,s1,s2,k, l〉 〈k,(closure x ρ e),ρ ,s1,s2, l〉

TABLE 6.3. Core Harlan transition function (Expression configurations).

Continuation Configurations
〈Empty,v,ρ,s1,s2,CPU〉 〈v,s1,s2〉
〈Unspawn(k,CPU),v,ρ,s1,s2,GPU〉 〈k,v,ρ ,s2,s1,CPU〉
〈Unspawn(k,GPU),v,ρ,s1,s2,GPU〉 〈k,v,ρ ,s1,s2,GPU〉
〈Rator(e,k),v,ρ,s1,s2, l〉 〈e,ρ,s1,s2,Rand(v,k), l〉
〈Rand((closure x ρ ′ e), ,)v,ρ ,s1,s2, l〉 〈e, [x : v]ρ ′,s1,s2,Return(ρ,k), l〉
〈Alloc(r,k),v,ρ,s1,s2, l〉 〈k,(label i),ρ ,s1[r := s1(r) :: v],s2, l〉

where i = length(s1) and r ∈ dom(s1)
〈Deref(r,k),(label i),ρ,s1,s2, l〉 〈k,s1(r, i),ρ,s1,s2, l〉

if r ∈ dom(s1) and i < length(s1(r))
〈Dealloc(r,k),v,ρ ,s1,s2, l〉 〈k,v,ρ ,s1 −{ρ},s2 −{ρ}, l〉
〈Return(ρ,k),v,ρ ′,s1,s2, l〉 〈k,v,ρ ,s1,s2, l〉

Otherwise
M ⊥ otherwise

TABLE 6.4. Core Harlan transition function (Continuation and Otherwise
configurations).

68

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

The transition function rules generally follow the behavior of the interpreter. One key

difference is that all erroneous behavior has been made explicit. Also, notice in the Un-

spawn continuation cases that the stores are reversed when switching from the GPU to the

CPU. This mirrors the behavior of the interpreter.

6.3. A Separation Logic Primer

As we will see in Section 6.4, the type system for Harlan depends strongly on the

locations of regions. Dereferencing a pointer into a region requires the region to be on the

current device. In order to ensure memory safety, the type system must guarantee that

when a pointer is dereferenced the target region is in the correct location.

The most obvious way to do this is to thread a mapping of regions to locations through-

out the typing rules that is updated to reflect region creation and movement. This quickly

becomes unwieldy, as the region mapping contains many regions that are irrelevant to any

given operation.

This problem is similar to reasoning about the types of memory locations, especially in

the presence of mutable references. Separation logic is a technique that simplifies reason-

ing about the state of memory [69]. Separation logic works in terms of assertions about a

heap, where a heap is a mapping from keys, such as labels or addresses, to values or types.

An example assertion is l 7→ τ , which states that a heap maps a location l to a value of type

τ . More interesting is the separating conjunction operator, ⋆. The statement ∆ ⋆∆′ states

that the heap can be split or separated into two disjoint parts, one which satisfies ∆ and

another which satisfies ∆′.

An extremely powerful tool in separation logic is the frame rule:

{P}C{Q}

{R⋆P}C{R⋆Q}

Intuitively, the frame rule means that if a statement is true in one heap, that statement

remains true in any extension of that heap and it leaves the extended portion of the heap

unchanged. Crucially, the frame rule allows for local reasoning about portions of a pro-

gram.

69

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Harlan uses a version of separation logic in its typing rules. The rules include a state-

ment that must be true about the heap in which the program runs. For the purposes of

Harlan’s type system, a heap is a mapping from regions onto locations, either CPU or

GPU.

6.3.1. Heap Assertions. The typing rules state conditions about the locations of re-

gions using assertions inspired by separation logic. The letter ∆ is used to represent a heap

assertion, and can be one of the following.

• An empty heap assertion. This assertion makes no claims about the heap.

[r 7→ l] A singleton heap. This assertion claims only that the region r is in location

l.

∆1 ⋆∆2 Separating conjunction of two heaps. This is the union of ∆1 and ∆2. The

domains of ∆1 and ∆2 must be disjoint.

For the purposes of the semantics of Core Harlan, we must define what it means for

a heap assertion to describe a certain pair of stores. We use the judgment ∆; l ⊢ s1,s2 to

indicate this. The l parameter is the location of s1, while s2 is the store that is in the alternate

location. Thus judgment is defined formally below.

DEFINITION 1 (Heap Consistency). We say ∆; l ⊢ s1,s2 if and only if whenever there exists

a ∆′ such that ∆ = ∆′ ⋆ [r 7→ l] then r ∈ dom(s1) and whenever there exists a ∆′ such that ∆ =

∆′ ⋆ [r 7→ other(l)] then r ∈ dom(s2)

Note that the ⋆ operator is commutative and associative. We also treat • as an identity

for ⋆. That is, for any ∆, ∆ = ∆⋆•= •⋆∆.

6.4. Type System

We shall now develop a type system that will allow us to state and prove the desired

safety properties for Harlan. These rules use the following parameters:

• Γ - This is a traditional type environment. It maps variable names onto types. In

addition, Γ contains the region identifiers that are in scope.

70

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

τ ::= ()
| (ref r τ)

| τ
∆;∆′

−−→l τ ′

FIGURE 6.7. Syntax of types for Core Harlan.

TM-VALUE

Σ ⊢ s1,s2 Σ ⊢ v : τ

〈v,s1,s2〉 : τ

TM-EXPR

Σ ⊢ Γ ∼ ρ Γ;∆; l ⊢ e : τ ′;∆′ Σ ⊢ s1,s2 ∆; l ⊢ s1,s2 Γ;∆′;Σ; l ⊢ k : τ ′ → τ

〈e,ρ,s1,s2,k, l〉 : τ

TM-CONT

Σ ⊢ Γ ∼ ρ ∆; l ⊢ s1,s2 Σ ⊢ s1,s2 Γ;∆;Σ; l ⊢ k : τ ′ → τ Σ ⊢ v : τ

〈k,v,ρ,s1,s2, l〉 : τ

FIGURE 6.8. Machine typing rules.

• ∆ - This is a heap assertion (Section 6.3.1), which states facts about the location of

the regions used by an expression.

• Σ - This is a store typing, which makes pairs of region names and indices, (r, i), to

types.

In Figure 6.7, we see the syntax for types in Core Harlan. We use () as a base type.

References have type (ref r τ), which indicates a pointer into region r to a value of type

τ . Function types, τ
∆;∆′

−−→l τ ′, indicate a function that takes a value of type τ and returns a

value of type τ ′. The l annotation indicates whether the function may execute on the CPU

or GPU. ∆ indicates the function’s requirements on the state of the heap upon entry and ∆′

reflects the state of the heap upon the function’s exit.

The typing rules are presented in a top down fashion, starting with the typing for

machine configurations.

6.4.1. Machine Typing Rules. The judgment M : τ is presented in Figure 6.8. It is read

“machine configuration M has type τ .”

71

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

The TM-VALUE rule states that a final value configuration of a machine has a given

type. This is established by showing that the return value has a given type, using the rules

in Figure 6.13. However, values are meaningless apart from their associated stores, so the

value typing judgment relies on a store typing environment, Σ. In turn, we must show

that Σ accurately reflects the state of the stores. This statement is captured by the Σ ⊢ s1,s2

condition, which is defined below.

DEFINITION 2 (Well-typed Stores). Σ ⊢ s1,s2 if and only if ∀(r, i) ∈ dom(Σ),Σ ⊢ s1(r, i) :

Σ(r, i) or Σ ⊢ s2(r, i) : Σ(r, i).

The well-typed stores condition needs to consider both the primary and alternate stores,

but it is not concerned with the location of regions between these two stores. In other

words, moving a region between devices does not affect the type of any values.

The TM-EXPR rule requires a number of preconditions in order to show that an expres-

sion evaluation machine configuration has the correct type. The two key conditions are

that the continuation k will produce a value of the correct type (Γ;∆′;Σ; l ⊢ k : τ ′ → τ) and

that evaluation of the expression will produce a value of the correct type for the continua-

tion (Γ;∆; l ⊢ e : τ ′;∆′). It is important to notice how the heap assertions evolve throughout

the computation. The expression typing judgment includes both an initial heap assertion,

∆, and an outgoing heap assertion ∆′. This is to account for the changes to the location of re-

gions that can result from evaluating e, such as when e contains push and pull expressions.

Because evaluating the argument to the continuation completes entirely before executing

the continuation, the continuation typing judgment uses the outgoing heap assertion, ∆′.

There are several other conditions in TM-EXPR that are necessary to ensure everything

is consistent. As before, we need to show that there is a store typing, Σ, that reflects the state

of the stores s1 and s2. Similarly, we must show that the heap assertion is consistent with

the current execution location and the stores, stated as ∆; l ⊢ s1,s2. Finally, we must show

that the typing environment Γ is consistent with the values in the runtime environment ρ ,

stated as Σ ⊢ Γ ∼ ρ . These two conditions are defined formally below.

72

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

DEFINITION 3 (Well-typed Environments). We say an environment ρ is well-typed with

respect to a type environment Γ and a store typing Σ, written Σ ⊢ Γ ∼ ρ , if dom(Γ) = dom(ρ) and

∀x ∈ dom(ρ),Σ ⊢ ρ(x) : Γ(x).

DEFINITION 4 (Consistent Stores). Two stores s1 and s2 are consistent with ∆ from location l,

written ∆; l ⊢ s1,s2, if for any r, there exists a ∆′ such that ∆ = ∆′ ⋆ [r 7→ l] if and only if r ∈ dom(s1)

and there exists another ∆′ such that ∆ = ∆′ ⋆ [r 7→ other(l)] if and only if r ∈ dom(s2).

Finally, we consider the TM-CONT rule. For this machine configuration, we have a

continuation k being applied to a value v. The Γ;∆;Σ; l ⊢ k : τ ′ → τ tells us that k expects

a value of type τ ′ to produce a value of type τ , which is provided by Σ ⊢ v : τ . As before,

we need everything to be consistent, which we get from Σ ⊢ Γ ∼ ρ , ∆; l ⊢ s1,s2 and Σ ⊢ s1,s2

conditions.

6.4.2. Expression Typing Rules. We have already seen the expression typing judg-

ment in the previous section. The Γ;∆; l ⊢ e : τ ;∆′ judgment is defined in Figure 6.9. The

judgment can be read as “in typing environment Γ, with heap assertion ∆ and executing in

location l, e has type τ with an updated heap assertion ∆′.”

TE-VAR simply requires the variable x to be defined in the type environment and does

not have any effect on the heap assertion. Similarly, TE-NIL has no requirements as ()

immediately evaluates to a value of type (), again with no effect on the heap assertion.

In TE-SPAWN, we allow the spawn expression to execute in any location l, but its subex-

pression e must be able to execute on the GPU. Finally, the subexpression must evaluate

to a reference because data can only move between the CPU and GPU through region

transfers.

In both TE-PUSH and TE-PULL, we require the region in question to exist in some

location, indicated by the ∆⋆ [r 7→ l] condition. Once the execution completes, the region is

guaranteed to be on the GPU in the case of push and on the CPU in the case of pull. Note

that these rules do not require the region to be in a particular location to start with. This

model’s Harlan’s behavior, where regions are only moved if needed.

73

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

TE-VAR

Γ(x) = τ

Γ;∆; l ⊢ x : τ ;∆

TE-NIL

Γ;∆; l ⊢ () : ();∆

TE-SPAWN

Γ;∆;GPU ⊢ e : (ref r τ);∆′

Γ;∆; l ⊢ (spawn e) : (ref r τ);∆′

TE-PUSH

Γ;∆⋆ [r 7→ l];CPU ⊢ (push r) : ();∆⋆ [r 7→ GPU]

TE-PULL

Γ;∆⋆ [r 7→ l];CPU ⊢ (pull r) : ();∆⋆ [r 7→ CPU]

TE-APP

Γ;∆1; l ⊢ e1 : τ ′ ∆;∆′

−−→l′ τ;∆2 Γ;∆2; l ⊢ e2 : τ ′;∆3 ⋆∆ l′ <: l

Γ;∆1; l ⊢ (e1 e2) : τ;∆3 ⋆∆′

TE-λ
Γ[x : τ ′];∆′; l′ ⊢ e : τ;∆′′ ∆′ = [r1 7→ l1]⋆ . . . ⋆ [rn 7→ ln] ri ∈ Γ, for 1 ≤ i ≤ n

Γ;∆; l ⊢ (lambda l′ [r1 : l1, . . . ,rn : l2] (x) e) : τ ′ ∆′;∆′′

−−−→l′ τ;∆

TE-LETREGION

Γ,r;∆⋆ [r 7→ l]; l ⊢ e : τ ;∆′ ⋆ [r 7→ l′] r /∈ frv(τ) r /∈ Γ

Γ;∆; l ⊢ (let-region r e) : τ ;∆′

TE-REF

Γ;∆; l ⊢ e : τ;∆′ ⋆ [r 7→ l] r ∈ Γ

Γ;∆; l ⊢ (ref r e) : (ref r τ);∆′ ⋆ [r 7→ l]

TE-DEREF

Γ;∆; l ⊢ e : (ref r τ);∆′ ⋆ [r 7→ l] r ∈ Γ

Γ;∆; l ⊢ (deref r e) : τ ;∆′ ⋆ [r 7→ l]

FIGURE 6.9. Typing rules for expressions.

TE-APP is somewhat more complicated because we must take care with the evolution

of the heap between the evaluation of the operator e1 and the argument e2. Furthermore,

as we saw in the syntax of types in Figure 6.7, procedures carry their own region require-

ments which must be respected. As is standard, TE-APP requires that e1 evaluate to a

procedure and that e2 evaluate to a value of the correct type for the procedure. Because

each of these expressions may affect the location of regions, this rule enforces a left-to-right

evaluation order. First, e1 is evaluated under the conditions of ∆1, producing an updated

heap assertion, ∆2. This heap assertion is used to evaluate e2, which may make arbitrary

changes to the heap provided it respects the requirements of the result of e1. This is shown

74

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

CPU<: CPU GPU<: CPU GPU<: GPU

FIGURE 6.10. Location compatibility rules. Intuitively, l <: l′ means that
code that runs in location l can also run in location l′.

in the fact that e2’s updated heap is ∆3 ⋆∆. Finally, the procedure is applied to the argu-

ment under the conditions of ∆3 ⋆∆, producing a new heap assertion ∆3 ⋆∆′ that reflects the

changes incurred by the procedure. Additionally, we require that the current execution

location is compatible with the procedure. This is shown by the l′ <: l condition, whose

definition is given in Figure 6.10.

TE-λ is similar to the λ rule for Simply Typed Lambda Calculus (STLC), but with

some extra conditions due to the region annotations. In particular, we require the body of

the procedure to run under a heap assertion constructed solely from the region location

annotations on the lambda expression. In other words, the expression must make all of its

region location assumptions explicit. For this reason, the closure type is somewhat more

complicated, as it must capture a heap assertion that must hold on entry to the function,

another that reflects the location of the regions when the function returns, and a location

annotation that describes where a procedure may execute. For example, procedures that

push or pull regions cannot execute on the GPU because region transfers may only be

initiated from the CPU.

For TE-LETREGION, we need to make sure that the subexpression e can be typed with

a new region r added to the type environment and heap assertion. We do not allow regions

to be shadowed, hence the e /∈ Γ requirement. Additionally, we need to ensure that region

references do not escape their region,1 so we require that r is not in the free region variables

of the return type (r /∈ frv(τ)). See Figure 6.12 for the definition of frv.

TE-REF and TE-DEREF are similar. In the case of TE-REF, the argument must produce

a value of type τ and then the full (ref r e) expression produces a value of type (ref r τ).

Symmetrically, TE-DEREF requires the argument to produce an appropriate reference and

1This is not strictly necessary, as the dereference rule also requires the region to be in scope. It is safe for a
reference to outlive its region provided that the program never dereferences it.

75

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

TK-EMPTY

Γ;∆;Σ;CPU ⊢ Empty : τ → τ

TK-UNSPAWN

Γ;∆;Σ; l′ ⊢ k : (ref r τ ′) → τ l <: l′

Γ;∆;Σ; l ⊢ Unspawn(k, l′) : (ref r τ ′) → τ

TK-RATOR

Γ;∆′′ ⋆∆2;Σ; l ⊢ k : τ ′′ → τ Γ;∆; l ⊢ e : τ ′;∆′ ⋆∆2

Γ;∆;Σ; l ⊢ Rator(e,k) :
(

τ ′ ∆′;∆′′

−−−→l τ ′′
)

→ τ

TK-RAND

Σ ⊢ v : τ ′ ∆;∆′

−−→l′ τ ′′ Γ;∆0 ⋆∆′;Σ; l ⊢ k : τ ′′ → τ l <: l′

Γ;∆0 ⋆∆;Σ; l ⊢ Rand(v,k) : τ ′ → τ

TK-ALLOC

Γ;∆⋆ [r 7→ l];Σ; l ⊢ k : (ref r τ ′) → τ

Γ;∆⋆ [r 7→ l];Σ; l ⊢ Alloc(r,k) : τ ′ → τ

TK-DEREF

Γ;∆⋆ [r 7→ l];Σ; l ⊢ k : τ ′ → τ

Γ;∆⋆ [r 7→ l];Σ; l ⊢ Deref(r,k) : (ref r τ ′) → τ

TK-DEALLOC

Γ;∆;Σ−{r}; l ⊢ k : τ ′ → τ r /∈ frv(τ ′) r /∈ Γ

Γ;∆⋆ [r 7→ l′];Σ; l ⊢ Dealloc(r,k) : τ ′ → τ

TK-RETURN

Σ ⊢ Γ′ ∼ ρ Γ′;∆;Σ; l ⊢ k : τ ′ → τ

Γ;∆;Σ; l ⊢ Return(ρ ,k) : τ ′ → τ

FIGURE 6.11. Continuation typing rules.

then the (deref r e) expression returns a value stripped of its reference type. In both

cases, the region r is required to be in scope (r ∈ Γ), and the region must be in the current

location upon completion of the argument evaluation.

6.4.3. Continuation Typing Rules. The rules for typing continuations are given in Fig-

ure 6.11. These rules define a judgment Γ;∆;Σ; l ⊢ k : τ1 → τ2, which states that within a

typing environment Γ, heap assertion ∆, store typing Σ and location l, the continuation k

will, given a value of type τ1, produce a value of type τ2.2

We use Empty as the initial continuation, so in some ways Empty corresponds to the

identity function. As such, it simply passes its argument on, producing a value of type

τ when given a value of type τ . We require the location to be CPU, to enforce that Core

Harlan programs begin and end execution on the CPU. These conditions are reflected in

the TK-EMPTY rule.

2Modulo nontermination, of course.

76

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

The Unspawn continuation is used to possibly swap stores if necessary to signify that

execution is moving from the GPU to CPU. As such, this continuation passes its argument

through unchanged. The typing rule, TK-UNSPAWN requires the argument to be a refer-

ence in order to model the fact that Harlan only passes data between devices by reference.

For TK-RATOR and TK-RAND, recall how the evaluation of procedure applications

proceeds. Because side effects such as moving regions are involved, we must encode the

order of evaluation both in the transition function and the type rules. Given an expression

(e1 e2), the evaluator first evaluates e1 while saving a Rator continuation on the stack

(Table 6.3). The Rator continuation expects to receive a closure value and then proceeds

evaluating the procedures argument, e2. Finally, the Rand continuation saves the proce-

dure and receives its argument evaluated to a value and then commences execution of the

procedure (Table 6.4).

This order of evaluation imposes several constraints on the heap assertions used at

each step. In TK-RATOR, we require the argument to the continuation to have a procedure

type, τ ′ ∆′;∆′′

−−−→l τ ′′. Since the next step is to evaluate the saved argument expression, e, we

require that we can type e using the heap assertion ∆. Upon return from evaluating e,

we require ∆′ ⋆∆2 to hold. This means that the heap assertion meets the requirements to

apply the procedure, ∆′, in addition to some other statements about the heap, ∆2. Then,

we require the saved continuation to have the correct type given ∆′′ ⋆∆2, which reflects the

changes made to the heap by applying the procedure combined with the portion of the

heap that remained unchanged. This rule can be thought of has having a frame rule built

in.

TK-RAND requires the saved procedure v to be a procedure type. Furthermore, the

heap assertion must satisfy the procedure’s requirements, ∆. The saved continuation k

must then be well-typed under the changes to the heap introduced by applying the proce-

dure, ∆′, combined with the separate portion of the heap that does not concern the applied

procedure, ∆0. Finally, we require that the procedure is able to execute in the current loca-

tion, indicated by l <: l′.

77

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

frv(()) = {}

frv((ref r τ)) = {r}∪ frv(τ)

frv(τ
∆;∆′

−−→l τ ′) = frv(τ)∪ frv(τ ′)∪dom(∆)∪dom(∆′)

other(CPU) = GPU

other(GPU) = CPU

FIGURE 6.12. Auxiliary functions.

TV-NIL

Σ ⊢ () : ()

TV-REF

Σ(r, i) = τ

Σ ⊢ (label i) : (ref r τ)

TV-PROC

Σ ⊢ Γ ∼ ρ Γ[x : τ ′];∆; l ⊢ e : τ ;∆′

Σ ⊢ (closure x ρ e) : τ ′ ∆;∆′

−−→l τ

FIGURE 6.13. Typing rules for values.

For TK-ALLOC, we require that the region being allocated from is in the current execu-

tion location and that the next continuation k accepts a reference type. Similarly, TK-DEREF

requires the dereferenced region to be in the current execution location and that the next

continuation accept a value of the type of the reference.

In TK-DEALLOC, we require that the region being deallocated—that is, destroyed—not

appear in the type of the argument value in order to prevent escaping region references.

Finally, TK-RETURN requires us to supply a new typing environment Γ′ that matches

the saved environment for the stack frame being restored.

6.4.4. Value Typing Rules. Figure 6.13 defines the judgment Σ ⊢ v : τ , stating that a

value v has type τ under the store typing environment Σ. For TV-NIL, the unit expression

() always has type (). TV-REF states that a label has type (ref r i) if dereferencing the

pointer in r yields a value of type τ . Finally, TV-PROC states that a closure has a function

type τ ′ ∆;∆′

−−→l τ if we can find a Γ such that the body expression e has the correct type.

6.5. Type Safety

THEOREM 1 (Type Safety). If M : τ then there exists an M′ such that M M′ and M′ : τ .

78

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

We will devote the rest of this section to proving this theorem. The proof proceeds

by induction on the structure of the typing judgment, M : τ . The proof is broken down

into three main sections, according to the three rules from the machine typing judgment

(Figure 6.8). These rules are TM-VALUE, TM-EXPR and TM-CONT. The TM-VALUE case

is small and straightforward, but the other two cases are further broken down according

to the expression and continuation typing rules (Figures 6.9 and 6.11).

6.5.1. Case TM-VALUE. In this case we have M : τ because of the TM-VALUE rule.

This means M = 〈v,s1,s2〉 for some v, s1 and s2. Furthermore, we know from TM-VALUE

that there is some Σ such that Σ ⊢ s1,s2 and Σ ⊢ v : τ .

Using these facts, we must find a new machine, M′, such that M M′ and M′ : τ . The

transition function states that 〈v,s1,s2〉 〈v,s1,s2〉, so we will let M′ = M. Because the ma-

chine state has not changed, we can conclude M′ : τ trivially from the induction hypothesis.

6.5.2. Case TM-EXPR. In this case, we have M = 〈e,ρ,s1,s2,k, l〉. From the TM-EXPR

rule, we know the following:

Σ ⊢ Γ ∼ ρ(2)

Γ;∆; l ⊢ e : τ ′;∆′(3)

Σ ⊢ s1,s2(4)

∆; l ⊢ s1,s2(5)

Γ;∆′;Σ; l ⊢ k : τ ′ → τ(6)

〈e,ρ,s1,s2,k, l〉 : τ(7)

We will further break this case down by expression types, giving us ten cases to consider–

one for each rule in Figure 6.9. In each case, we need show how to find an M′ such that

〈e,ρ ,s1,s2,k, l〉 M′ and M′ : τ .

79

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

6.5.2.1. TE-VAR. In this case, we have e = x for some x. From the TE-VAR rule, we also

know the following:

Γ(x) = τ ′(8)

The TE-VAR rule further refines (3) to

(9) Γ;∆; l ⊢ x : τ ′;∆

Importantly, we see that ∆′ = ∆. In other words, evaluating a variable reference does not

affect the location of any regions.

In order to apply the step function and not step to an error configuration, we need to

show that ρ(x) is defined. We know from (2) that ρ(x) is defined precisely when Γ(x) is

defined. We know Γ(x) is defined from (8). Let v = ρ(x), then from the step function we

have:

(10) 〈e,ρ,s1,s2,k, l〉 〈k,v,ρ ,s1,s2, l〉

Now we need to show 〈k,v,ρ ,s1,s2, l〉 : τ ′. To apply TM-CONT, we have several obliga-

tions to meet:

• Σ ⊢ Γ ∼ ρ , which is just (2)

• ∆; l ⊢ s1,s2, which is (5)

• Γ;∆′;Σ; l ⊢ k : τ ′ → τ , which is (6)

• Σ ⊢ v : τ ′

We conclude Σ ⊢ v : τ ′ using (2) and (8). Thus, we can use TM-CONT to conclude:

〈k,v,ρ ,s1,s2, l〉 : τ ′

6.5.2.2. TE-NIL. From the TE-NIL rule, we know that e = () and τ ′ = (). The step

function gives us M′ = 〈k,(),ρ,s1,s2, l〉. We now need to use TM-CONT to show M′ : τ ′,

that is, 〈k,(),ρ,s1,s2, l〉 : ().

80

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

As in the TE-VAR case, most of the conditions to use TM-CONT are exactly contained

within the induction hypotheses. However, we still must show Σ ⊢ () : (), which follows

straightforwardly from TV-NIL. Thus, we use TM-CONT to conclude M′ : τ ′.

6.5.2.3. TE-SPAWN. This case has e = (spawn e′). The TE-SPAWN rule tells us that

τ ′ = (ref r τ ′′) and allows us to refine the induction hypothesis as follows.

Γ;∆; l ⊢ (spawn e′) : (ref r τ ′′);∆′(11)

Γ;∆;GPU ⊢ e′ : (ref r τ ′′);∆′(12)

There are two possible cases of the step function to apply, depending on whether l =

CPU or l = GPU. We will consider these two separately.

Case l = CPU. Using the step function, we have M′ = 〈e′,ρ,s2,s1,Unspawn(k,CPU),GPU〉.

It is important to notice that the two stores have swapped and we have moved from execut-

ing on the CPU to the GPU. We must now attempt to use TE-EXPR to show 〈e′,ρ,s2,s1,Unspawn(k,CPU),GPU

τ . Most of the prerequisites are exactly among the induction hypotheses, but we still must

show Σ ⊢ s2,s1, ∆;GPU ⊢ s2,s1 and Γ;∆′;Σ;GPU ⊢ Unspawn(k,CPU) : τ ′ → τ .

We show Σ ⊢ s2,s1 using Lemma 1. Similarly, we use Lemma 2 to show ∆;GPU ⊢ s2,s1.

To show Γ;∆′;Σ;GPU ⊢ Unspawn(k,CPU) : τ ′ → τ we need to use TK-UNSPAWN, which

has the further obligation of Γ;∆′;Σ;CPU ⊢ k : (ref r τ ′′) → τ . This obligation is simply (6),

since τ ′ = (ref r τ ′′) and l = CPU.

Case l = CPU. Here, the step function gives us M′ = 〈e′,ρ,s1,s2,Unspawn(k,GPU),GPU〉.

We need to show 〈e′,ρ,s1,s2,Unspawn(k,GPU),GPU〉 : τ by using TM-EXPR. The prerequi-

sites for TM-EXPR are among the induction hypotheses, except for

Γ;∆′;Σ;GPU ⊢ Unspawn(k,GPU) : τ ′ → τ

which follows directly from TK-UNSPAWN and (6).

6.5.2.4. TE-PUSH. The TE-PUSH rule additionally gives us the following refinement

of (3), which is to say that e = (push r), ∆ = ∆′′ ⋆ [r 7→ l′] and ∆′ = ∆′′ ⋆ [r 7→ GPU] for some

81

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

∆′′.

(13) Γ;∆′′ ⋆ [r 7→ l′];CPU ⊢ (push r) : ();∆′′ ⋆ [r 7→ GPU]

Furthermore, we see that τ ′ = () and that l = CPU.

Now there are three subcases to consider: when r ∈ dom(s1), when r /∈ dom(s1) but

r ∈ dom(s2), and when r is in neither dom(s1) nor dom(s2).

Case r ∈ dom(s1). From the step function, we have M′ = 〈k,(),ρ ,s1−{r},s2 :: s1(r),CPU〉.

We want to use TM-CONT to show M′ : τ . We will use the same store typing, type en-

vironment and runtime environments: Σ, Γ, and ρ . TM-CONT also needs a heap assertion,

which we will take to be the result of evaluating (push r), which is ∆′ = ∆′′ ⋆ [r 7→ GPU].

Applying TM-CONT gives us the following proof obligations.

• Σ ⊢ Γ ∼ ρ

• ∆′′ ⋆ [r 7→ GPU];CPU ⊢ s1 −{r},s2 :: s1(r)

• Σ ⊢ s1 −{r},s2 :: s1(r)

• Γ;∆′′ ⋆ [r 7→ GPU];Σ;CPU ⊢ k : () → τ

• Σ ⊢ v : ()

The first obligation is just (2). The fourth obligation is just (6) with the appropriate substi-

tutions applied. The fifth obligation follows directly from TV-NIL. The second through

fourth obligations essentially amount to showing (5) and (4) still hold under the new heap

assertion.

Recall from Definition 1 that in order to show ∆′′ ⋆ [r 7→ GPU];CPU ⊢ s1 −{r},s2 :: s1(r)

we must show two things:

(a) If there exists a ∆′′′ such that ∆′′ ⋆ [r 7→ GPU] =∆′′′ ⋆ [r′ 7→ CPU] then r
′ ∈ dom(s1 −{r}).

(b) If there exists a ∆′′′ such that ∆′′ ⋆ [r 7→ GPU] =∆′′′ ⋆ [r′ 7→ GPU] then r
′ ∈ dom(s2 :: s1(r)).

82

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

For Item (a), consider whether r = r
′. If r = r

′ then we have a contradiction, since the

heap assertion maps r to both CPUand GPU. This cannot happen without violating the dis-

jointness requirement for ⋆. Now consider if r 6= r
′. We know from (5) that ∆′′ ⋆ [r 7→ GPU]; l ⊢

s1,s2, which means if there exists a ∆(4) such that ∆′′ ⋆ [r 7→ GPU] = ∆(4) ⋆ [r′ 7→ CPU] that

r
′ ∈ dom(s1). We can use ∆′′′ as the ∆(4) we are looking for, so therefore r

′ ∈ dom(s1).

For Item (b), we will also consider the cases for r = r
′ and r 6= r

′ separately. In either

case, we know that dom(s2 :: s1(r)) = {r} ∪ dom(s2). If r = r
′ then it is obvious that r ∈

{r}∪dom(s2). Now consider when r 6= r
′. Using (5), we know that if there exists a ∆(4) such

at ∆′′ ⋆ [r 7→ GPU] = ∆(4) ⋆ [r′ 7→ GPU] then r
′ ∈ dom(s2). Using Lemma 4, we know that since

∆′′ ⋆ [r 7→ GPU] = ∆′′′ ⋆ [r′ 7→ GPU] then there is some ∆(5) such that ∆′′′ = ∆(5) ⋆ [r 7→ GPU].

Choose ∆(4) = ∆(5) ⋆ [r 7→ GPU]. We need to show:

∆′′ ⋆ [r 7→ CPU] = ∆(5) ⋆ [r 7→ CPU]⋆ [r′ 7→ GPU]

We know ∆′′ ⋆ [r 7→ GPU] = ∆(4) ⋆ [r 7→ GPU]⋆ [r′ 7→ GPU]. We can replace [r 7→ GPU] on both

sides of the equation with [r 7→ CPU], giving the result we wanted. Therefore, we conclude

that r
′ ∈ dom(s2) and therefore in dom(s2 :: s1(r) ::).

To show Σ ⊢ s1 −{r},s2 :: s1(r), we observe that Definition 2 holds as long as either

store maps each (r, i) pair to a value of the correct type. In other words, the typing is

independent of the values’ locations and thus moving a region from one store to another

does not affect the typing. Thus, Σ ⊢ s1 −{r},s2 :: s1(r) holds.

Having met these proof obligations, we conclude for this subcase that M′ : τ .

Case r /∈ dom(s1) but r ∈ dom(s2). In this case, M steps to M′ = 〈k,(),ρ,s1,s2,CPU〉. We

want to show this has type τ using TM-CONT. Since the step function left the stores un-

changed, we will similarly leave the heap assertion, store typing and type environment

the same.

Once again, TM-CONT gives us the following obligations:

• Σ ⊢ Γ ∼ ρ

• ∆′′ ⋆ [r 7→ GPU];CPU ⊢ s1,s2

• Σ ⊢ s1,s2

83

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

• Γ;∆′′ ⋆ [r 7→ GPU];Σ;CPU ⊢ k : () → τ

• Σ ⊢ v : ()

These obligations follow respectively from (2), (5), (4), (6) and TV-NIL. Thus we conclude

M′ : τ .

Case r /∈ dom(s1) and r /∈ dom(s2). In this case the step function would give us ⊥, which

cannot be typed. Fortunately, we shall find a contradiction between this case’s assump-

tions and the induction hypothesis.

Using (5), we know that if l′ = CPU then r ∈ dom(s1) and if l′ = GPU then r ∈ dom(s2). In

both cases, we contradict our assumption that r /∈ dom(s1) and r /∈ dom(s2), which means

this case is impossible.

6.5.2.5. TE-PULL. This case is analogous to the TE-PUSH case.

6.5.2.6. TE-APP. The TE-APP rule refines (3) to Γ;∆; l ⊢ (e1 e2) : τ ′;∆3 ⋆∆(2). Further-

more, we gain the following new pieces of information.

Γ;∆; l ⊢ e1 : τ ′′ ∆(1);∆(2)

−−−−→l τ ′;∆2(14)

Γ;∆2; l ⊢ e2 : τ ′′;∆3 ⋆∆(1)(15)

Applying the step function to M gives us M′ = 〈e1,ρ,s1,s2,Rator(e2,k), l〉. In order to

apply TM-EXPR, we will first show the following:

• Σ ⊢ Γ ∼ ρ

• Γ;∆; l ⊢ e1 : τ ′′;∆3 ⋆∆(1)

• Σ ⊢ s1,s2

• ∆; l ⊢ s1,s2

• Γ;∆3 ⋆∆(1);Σ; l ⊢ Rator(e2,k) : τ ′′ → τ

The first four are (2), (14), (4) and (5), respectively.

To show the final obligation, we use TK-RATOR, which gives us two new obligations:

• Γ;∆3 ⋆∆(1);Σ; l ⊢ k : τ ′ → τ

• Γ;∆2; l ⊢ e2 : τ ′′;∆3 ⋆∆(1)

These are just (6) and (15).

84

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Thus we have met all our obligations and therefore conclude M′ : τ .

6.5.2.7. TE-λ . We have the following from TE-λ .

e = (lambda l′ [r1 : l1 . . .rn : ln] (x) e′)(16)

∆′ = ∆(17)

∆′′ = [r1 7→ l1]⋆ . . . ⋆ [rn 7→ ln](18)

Γ[x : τ1];m;∆′′ ⊢ l′ : e′;τ2∆′′′(19)

τ ′ = τ1
∆′′;∆′′′

−−−→l′ τ2(20)

The step function gives M′ = 〈k,(closure x ρ e′),ρ,s1,s2, l〉.

We want to show M′ : τ using TM-CONT. Most of the prerequisites for TM-CONT are

in the induction hypotheses, but we must still show that the value being passed to the

continuation has the right type. That is:

Σ ⊢ (closure x ρ e′) : τ ′

We can do this using TV-PROC, which requires showing Σ ⊢ Γ ∼ ρ , which is just (2), and

Γ[x : τ1];∆′′; l′ ⊢ e′ : τ2;∆′′′, which is just (19). Therefore, we conclude M′ : τ .

6.5.2.8. TE-LETREGION. From TE-LETREGION, we have:

e = (let-region r e′)(21)

Γ;∆⋆ [r 7→ l]; l ⊢ e′ : τ ′;∆′ ⋆ [r 7→ l′](22)

r /∈ frv(τ ′)(23)

r /∈ Γ(24)

The step function gives us the following next state for the machine.

M′ = 〈e′,ρ , [r : ·] :: s1,s2,Dealloc(r,k), l〉

To show this has the correct type, we must use TM-EXPR, which gives us the following

proof obligations:

85

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

• Σ ⊢ Γ ∼ ρ

• Γ;∆⋆ [r 7→ l]; l ⊢ e′ : τ ′;∆⋆ [r 7→ l′]

• Σ ⊢ [r : ·] :: s1,s2

• ∆⋆ [r 7→ l]; l ⊢ [r : ·] :: s1,s2

• Γ;Γ′ ⋆ [r 7→ l′];Σ; l ⊢ Dealloc(r,k) : τ ′ → τ

The first obligation is just (2). The second obligation is (22). The remaining obligations

take a little more care.

To show Σ ⊢ [r : ·] :: s1,s2, recall from Definition 2 that we need to show ∀(r, i) ∈ dom(Σ),

Σ ⊢ s1(r, i) : Σ(ri) or Σ ⊢ s2(r, i) : Σ(ri). Because we have just extended s1 with an empty

region and we knew that r /∈ dom(Σ), we that Σ ⊢ [r : ·] :: s1,s2 still holds.

∆⋆ [r 7→ l]; l ⊢ [r : ·] :: s1,s2 holds because we have r ∈ dom([r : ·] :: s1) and the rest holds

from (5).

Finally, we must show Γ;Γ′ ⋆ [r 7→ l′];Σ; l ⊢ Dealloc(r,k) : τ ′ → τ using TK-DEALLOC.

This rule has the following obligations:

• Γ;∆′ ⋆ [r 7→ l′];Σ−{r}; l ⊢ k : τ ′ → τ

• r /∈ frv(τ ′)

• r /∈ Γ

For the first obligation, we already know (6.5.2.8), and furthermore because r /∈ dom(Σ),

we know that Σ−{r}= Σ. Therefore, we conclude Γ;Γ′ ⋆ [r 7→ l′];Σ−{r}; l ⊢ k : τ ′ → τ . The

remaining obligations are among the induction hypotheses, so we conclude k has the ap-

propriate type and go on to conclude M′ : τ .

6.5.2.9. TE-REF. From TE-REF, we know:

e = (ref r e′)(25)

τ ′ = (ref r τ ′′)(26)

∆′ = ∆′′ ⋆ [r 7→ l](27)

Γ;∆; l ⊢ e′ : τ ′′;∆′′ ⋆ [r 7→ l](28)

86

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

The step function yields the following.

M′ = 〈e′,ρ ,s1,s2,Alloc(r,k), l〉

As usual, we want to use TM-EXPR to show M′ : τ . Most of the prerequisites are in-

cluded in the induction hypotheses. However, we must use TK-ALLOC to show Γ;∆′;Σ; l ⊢

Alloc(r,k) : τ ′′ → τ .

TK-ALLOC requires us to show Γ;∆′;Σ; l ⊢ k : (ref r τ ′′) → τ , which is just (6) with the

appropriate substitutions applied. Therefore, we conclude M′ : τ .

6.5.2.10. TE-DEREF. This case proceeds analogously to the TE-REF case. From TE-

DEREF, we have:

e = (deref r e′)(29)

∆′ = ∆′′ ⋆ [r 7→ l](30)

Γ;∆; l ⊢ e′ : (ref r τ ′′);∆′′ ⋆ [r 7→ l](31)

The step function yields M′ = 〈e′,ρ,s1,s2,Deref(r,k), l〉. To show M′ : τ , we use TM-EXPR.

Most of the prerequisites for TM-EXPR are among the induction hypotheses, but we must

still show the following.

Γ;∆′′ ⋆ [r 7→ l];Σ; l ⊢ Deref(r,k) : (ref r τ ′′) → τ

As before, this is just (6) with the appropriate substitutions applied. Therefore, M′ : τ .

6.5.3. Case TM-CONT. In these subcases, we have M : τ by TM-CONT, which means

we also gain the following pieces of information:

Σ ⊢ s1,s2(32)

Σ ⊢ Γ ∼ ρ(33)

∆; l ⊢ s1,s2(34)

Γ;∆;Σ; l ⊢ k : τ ′ → τ(35)

Σ ⊢ v : τ ′(36)

87

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

We will continue by inversion on (35), considering each of the rules from Figure 6.11.

6.5.3.1. TK-EMPTY. From TK-EMPTY, we have l = CPU, k = Empty and τ ′ = τ . The

step function yields M′ = 〈v,s1,s2〉. We can directly apply TM-VALUE using (32) and (36) to

show M′ : τ .

6.5.3.2. TK-UNSPAWN. We know the following from TK-UNSPAWN.

k = Unspawn(k′, l′)(37)

τ ′ = (ref r τ ′′)(38)

Γ;∆;Σ; l′ ⊢ k′ : (ref r τ ′′) → τ(39)

l <: l′(40)

Since v is of reference type, we also know there is some i such that v = (label i).

We have to consider l′ = GPU and l′ = CPU separately. When l′ = GPU we also know that

l = GPU because l <: l′. The step function gives us M′ = 〈k,(label i),ρ ,s1,s2, l
′〉. Using

TM-CONT, we conclude M′ : τ .

When l′ = CPU, we still know that l = GPU because there is no way to spawn an ex-

pression onto the CPU. In Table 6.3, we see that the only two right hand sides in which

an Unspawn continuation appear on the right hand side also have the execution location

set to GPU. Since l = GPU, we match a case of the transition function in Table 6.4 and get

M′ = 〈k,(label i),ρ ,s2,s1, l〉. Notice that the stores have been swapped because we have

transitioned from executing on the GPU to the CPU.

We want to show M′ : τ using TM-CONT, which requires showing the following.

• Σ ⊢ s2,s1

• ∆; l′ ⊢ s2,s1

• Γ;∆;Σ; l′ ⊢ k : τ ′ → τ

• Σ ⊢ v : τ ′

We show the first obligation using Lemma 1 with (32) and similarly we show the second

obligation with Lemma 2 with (34). The last two are just (39) and (36), respectively.

88

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

6.5.3.3. TK-RATOR. We gain the following new information from TK-RATOR:

τ ′ = τ1
∆1;∆2−−−→l τ2(41)

k = Rator(e,k′)(42)

Γ;∆; l ⊢ e : τ1;∆′(43)

Γ;∆′ ⋆∆2;Σ; l ⊢ k′ : τ2 → τ(44)

The step function yields M′ = 〈e,ρ ,s1,s2,Rand(v,k′), l〉. To show M′ : τ , we will use TM-

EXPR. Most of TM-EXPR’s requirements are already among the induction hypotheses, but

we still must show that Rand(v,k′) has the correct type:

Γ;∆′;Σ; l ⊢ Rand(v,k′) : τ1 → τ

We will show this using TK-RAND, but to do this we must show:

• Σ ⊢ v : τ1
∆1;∆2−−−→l τ2

• Γ;∆0 ⋆∆2;Σ; l ⊢ k′ : τ2 → τ , for some ∆0.

The first obligation is just (36). We can choose ∆0 = ∆′, which means the second obligation

is just (44).

Thus, we conclude M′ : τ .

6.5.3.4. TK-RAND. From TK-RAND, we know:

∆′ = ∆0 ⋆∆1(45)

k = Rand(v′,k′)(46)

Σ ⊢ v′ : τ ′ ∆1;∆2−−−→l′ τ ′′(47)

l′ <: l(48)

Γ;∆0 ⋆∆2;Σ; l ⊢ k′ : τ ′′ → τ(49)

Since v′ has a closure type, we know that v′ = (closure x ρ ′ e) for some x, ρ ′ and e.

Thus, by the step function, we have M′ = 〈e, [x : v]ρ ′,s1,s2,Return(ρ ,k′), l〉.

89

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

We want to show M′ : τ using TM-EXPR, but we will have to establish a few things

before we can do this. We know that v′ is well typed and must be well typed by TV-PROC.

Therefore we know that there is some Γ′ such that the following hold.

Σ ⊢ Γ′ ∼ ρ ′(50)

Γ′[x : τ];∆1; l ⊢ e : τ ′′;∆2(51)

In order to show M′ : τ using TM-EXPR, we must establish the following.

(a) Σ ⊢ Γ′[x : τ ′]∼ [x : v]ρ ′

(b) Γ′[x : τ];∆0 ⋆∆1; l ⊢ e : τ ′′;∆0 ⋆∆2

(c) Σ ⊢ s1,s2

(d) ∆0 ⋆∆1; l ⊢ s1,s2

(e) Γ′;∆0 ⋆∆2;Σ; l ⊢ Return(ρ ,k′) : τ ′′ → τ

A couple of these are obvious. Item (c) is just (32). Item (d) is (34), since ∆′ = ∆0 ⋆∆1.

For Item (a), it’s clear from (36) that Σ ⊢ Γ′(x) : ρ(x). We know the remainder, Σ ⊢ Γ′ ∼ ρ ′,

from (50).

We can show Item (b) using (51) and Lemma 3.

Finally, we show Item (e) using TK-RETURN with (33) and (49).

Therefore, we have established M′ : τ

6.5.3.5. TK-ALLOC. From TK-ALLOC, we know the following:

∆ = ∆′ ⋆ [r 7→ l](52)

k = Alloc(r,k′)(53)

Γ;∆′ ⋆ [r 7→ l];Σ; l ⊢ k′ : (ref r τ ′) → τ(54)

Because of (52) and the fact that ∆; l ⊢ s1,s2, we know that r ∈ dom(s1), which means we can

apply the step function to get:

M′ = 〈k′,(label i),ρ ,s1[r := s1(r) :: v],s2, l〉(55)

i = length(s1(r))(56)

90

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

We now want to show M′ : τ using TM-CONT. Let Σ′ = Σ :: [(r, i) : τ ′]. We have the

following obligations in order to use TM-CONT:

(a) Σ′ ⊢ s1[r := s1(r) :: v],s2

(b) Σ′ ⊢ Γ ∼ ρ

(c) ∆′ ⋆ [r 7→ l]; l ⊢ s1[r := s1(r) :: v],s2

(d) Γ;∆′ ⋆ [r 7→ l];Σ′; l ⊢ k′ : (ref r τ ′) → τ

(e) Σ′ ⊢ (label i) : (ref r τ ′)

For Item (a), we have chosen i such that s1[r := s1(r) :: v](i) = v and we know from (36)

that Σ ⊢ v : τ ′. Since we have only added new information to go from Σ to Σ′, we know that

Σ′ ⊢ v : τ ′ holds as well. Therefore, we can also conclude Σ′ ⊢ s1[r := s1(r) :: v],s2.

Item (b) holds by a similar argument. Recall Definition 3. The domain of Σ′ is a superset

of the domain of Σ, so for every x ∈ dom(ρ) we still have Σ′ ⊢ ρ(x) : Γ(x).

Item (c) holds because although we have updated the primary store, we have not

changed the location of any region and therefore the heap assertion is still in tact.

Item (d) holds by a similar argument to Item (b).

Item (e) is shown by a straightforward application of TV-REF.

Therefore, we conclude M′ : τ .

6.5.3.6. TK-DEREF. From TK-DEREF, we have:

k = Deref(r,k′)(57)

τ ′ = (ref r τ ′′)(58)

∆ = ∆′ ⋆ [r 7→ l](59)

Γ;∆′ ⋆ [r 7→ l];Σ; l ⊢ k′ : τ ′′ → τ(60)

Since Σ ⊢ v : (ref r τ ′′), we know from TV-REF that v = (label i) for some i and that

Σ(r, i) = τ ′′.

We can conclude from (59) and (34) that r ∈ dom(s1) and furthermore we know that

i < length(s1(r) because (label i) has type (ref r τ ′′) in Σ. Using these facts, we know the

91

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

step function will give us:

M′ = 〈k′,s1(r, i),ρ ,s1,s2, l〉

At this point, we also have all the information we need for a straightforward application

of TM-CONT to conclude M′ : τ .

6.5.3.7. TK-DEALLOC. In this case, we know the following.

k = Dealloc(r,k′)(61)

∆ = ∆′ ⋆ [r 7→ l′](62)

r /∈ frv(τ ′)(63)

r /∈ Γ(64)

Γ;∆′;Σ−{r}; l ⊢ k′ : τ ′ → τ(65)

The step function yields:

M′ = 〈k′,v,ρ ,s1 −{r},s2 −{r}, l〉

As usual, we want to use TM-CONT to show M′ : τ which obliges us to show the following.

(a) Σ−{r} ⊢ s1 −{r},s2 −{r}

(b) Σ−{r} ⊢ Γ ∼ ρ

(c) ∆′; l ⊢ s1 −{r},s2 −{r}

(d) Γ;∆′;Σ−{r}; l ⊢ k′ : τ ′ → τ

(e) Σ−{r} ⊢ v : τ ′

To show Item (a), notice that we already have Σ ⊢ s1,s2. In this case, we have just

removed r from each of the pieces of the judgment, so therefore Item (a) will still hold.

For Item (b), we know from (64) that r /∈ Γ, meaning nothing in this typing judgment

refers to r. Therefore, removing r from Σ will not affect the judgment.

For Item (c), we know from (62) that r /∈ ∆′. Since we also have removed r from s1 and

s2, then we can conclude ∆′; l ⊢ s1 −{r},s2 −{r}.

Finally, Item (d) is just (65) and we know Item (e) because (63) tells us that τ ′ cannot

refer to r and therefore it makes no difference whether r is in the domain of the store typing.

92

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

Therefore, we conclude that M′ : τ .

6.5.3.8. TK-RETURN. In this case, we have the following additional information:

k = Return(ρ ′,k′)(66)

Σ ⊢ Γ′ ∼ ρ ′(67)

Γ′;∆;Σ; l ⊢ k′ : τ ′ → τ(68)

From the step function, we have:

M′ = 〈k′,v,ρ ′,s1,s2, l〉

To show M′ : τ , we once again use TM-CONT, which carries the following obligations.

(a) Σ ⊢ s1,s2

(b) Σ ⊢ Γ′ ∼ ρ ′

(c) ∆; l ⊢ s1,s2

(d) Γ′;∆;Σ; l ⊢ k′ : τ ′ → τ

(e) Σ ⊢ v : τ ′

These are all directly contained within the induction hypotheses, so we conclude M′ : τ .

6.5.4. A Problematic Example. Consider the following example. This is based on a

similar example in [26].

(let-region r

(let ((x (ref r ())))

(lambda CPU [] (y)

(let ((z x))

()))))

We have used let here for clarity even though it is not in the semantics we are consid-

ering. Let binding can be implemented using an application of a lambda.

93

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

This example illustrates a difficulty with the semantics presented here. The program is

initially well typed but reduces to the following value configuration:

〈(closure y ρ (let ((z x)) ())), ·, ·〉

The environment, ρ , will consist of a mapping of x to some label. The label originally had

type (ref r ()), but now there is no way to assign a type to the label because no regions

are active. Thus we will not be able to produce a Γ to use with TV-PROC. The dangling

reference captured in x is obviously benign since it is never dereferenced, and attempts

to dereference it would cause the original expression to fail to typecheck. Still, this case

presents a difficulty for the semantics.

There are several ways to remedy this. Fluet and Morrisett solve it by replacing refer-

ences to destroyed regions with a special dead region marker [26]. It might also be possible

to fix this issue by adding a small restriction to the TE-VAR rule. In any case, solutions to

this issue are well known and are independent of the focus in this work on regions moving

between different compute devices.

6.6. Auxiliary Lemmas

LEMMA 1 (Store Typing Commutativity). If Σ ⊢ s1,s2 then Σ ⊢ s2,s1.

PROOF. This lemma follows directly from the definitions of Σ ⊢ s1,s2 and Σ ⊢ s2,s1. �

LEMMA 2 (Heap Swapping). ∆;CPU ⊢ s1,s2 if and only if ∆;GPU ⊢ s2,s1.

PROOF. This lemma follows directly from the definition of ∆;CPU ⊢ s1,s2 and ∆;GPU ⊢

s2,s1. �

LEMMA 3 (Frame Rule for Expressions). If Γ;∆; l ⊢ e : τ;∆′ then Γ;∆⋆∆′′; l ⊢ e : τ;∆′ ⋆∆′′

PROOF. By induction on the structure of the derivation of Γ;∆; l ⊢ e : τ ;∆′. �

LEMMA 4 (Heap Factoring). If ∆1 ⋆ [r1 7→ l1] = ∆2 ⋆ [r2 7→ l2] and r1 6= r2 then there exists a

∆3 such that ∆1 ⋆ [r1 7→ l1] = ∆3 ⋆ [r1 7→ l1]⋆ [r2 7→ l2].

94

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

PROOF. We can rewrite both ∆1 and ∆2 as a sequence of separating conjunctions, such

as [r′
1
7→ l′1] ⋆ . . . ⋆ [r

′
n 7→ l′n]. Because the two sides of the equation are equal, we know that

the expansion will have the same set of factors on either side. Choose the factors that are

common between ∆1 and ∆2 to build ∆3. �

6.7. Designing for Proof Mechanization

Although the type safety proof from Section 6.5 has not yet been mechanized, the se-

mantics was designed in such a way as to make mechanization easier in the future. The

discussion in this chapter is in the context of the Coq Proof Assistant [54], but should be

applicable to proof assistants in general.

One common challenge in mechanized proofs about programming languages is han-

dling identifier names. To be fair, naming has proved challenging in other contexts as

well. The rules for capture-avoiding substitution in the λ -Calculus are subtle. The name

resolution rules for C++ are still under study [84].

Several techniques have been developed to avoid the difficulties with α-equivalence

and capture avoiding substitution in mechanized proof assistants. Among these are the

locally nameless representation, in which bound variables are represented as De Bruijn in-

dices while free variables retain their names [15], and higher order abstract syntax (HOAS),

which uses the binding structures from the host language to implement the binding struc-

tures in the language being modeled [64].

These naming issues are one of the main reasons the semantics presented in this chap-

ter is built around an interpreter. The interpreter implements binding through a well-

defined, mechanical process of looking up variables in an environment. The runtime envi-

ronment is explicitly represented in the machine state, making it clear what value a vari-

able refers to. Building the semantics around an interpreter has the added benefit of being

able to execute test programs to verify that the semantics captures the desired intuition.

The interpreter by itself introduces some new problems. Coq requires all functions be

total, meaning in particular that all functions must terminate. Requiring the interpreter to

terminate would have the undesirable side effect of requiring all programs in Core Harlan

95

6. REGION SEMANTICS FOR MULTI-MEMORY SYSTEMS

to terminate. This is the primary motivation for transforming the interpreter to an abstract

machine. Instead of having a potentially non-terminating recursive evaluator function,

we instead represent the complete state of the machine—basically, the expression being

evaluated and the continuation—as a data structure. We then transform the interpreter to

be a function that applies one step of the computation. Each step is then guaranteed to

terminate, and evaluation can continue with a potentially unbounded number of steps of

the interpreter.

Termination alone is not enough to guarantee totality in the evaluator. The result of ex-

ecuting some Core Harlan programs is undefined, such as if a program attempts to deref-

erence a pointer into a non-existent region. While the type safety theorem guarantees that

this will not happen for well-typed programs, not all syntactically correct Core Harlan

programs are well-typed. We ensure totality then by explicitly representing an erroneous

machine configuration, ⊥. This way, the interpreter can still return a value that says the

machine is undefined if an error occurs.

Describing the semantics in terms of a total step function has another benefit. Type

safety proofs are traditionally presented using a combination of progress and preservation.

Progress says that if a machine configuration is well-typed, then there is another configu-

ration that the evaluation can step to. Preservation says that the type of each intermediate

configuration remains the same. In our case, progress is essentially free. Because the step

function is total, any configuration has a next step. To prove type safety then, we just have

to show that each of these steps retains the same type as before.

96

CHAPTER 7

Harlan Case Studies

Having discussed the design, implementation and semantics of the Harlan language, we

will now explore several applications to show Harlan’s utility on several classes of prob-

lems.

We will consider three main applications:

• Dense Matrix Multiplication (Section 7.2)

• Breadth first search and strongly connected components (Section 7.4)

• Ray tracing (Section 7.3)

In addition to these three main applications, we will also explore how Harlan programs

can interact with programs written in other languages (Section 7.5) and a number of mi-

crobenchmarks to characterize more specific details of Harlan’s performance (Section 7.6).

These case studies have been selected to show that Harlan is expressive enough to

implement several traditional GPU computing applications while also simplifying some

applications that are difficult to implement in existing GPU programming systems. Bench-

mark results are provided to characterize the performance of Harlan programs as well as

to inform future optimization efforts.

7.1. Benchmarking Methodology

This chapter includes several benchmarks comparing programs written in Harlan with

similar versions in other languages. All of the benchmarks presented here were performed

on Tesla, which consists of two Intel Xeon E5-2670 v3 CPUs at 2.30GHz, 32GB RAM and

two NVIDIA Tesla K40c GPUs. Each GPU has 12GB RAM and 2880 CUDA cores.

Each benchmark is run multiple times. The graphs show the average of the results

from each trial. Additionally, the graphs include error bars marking the 95% confidence

97

7. HARLAN CASE STUDIES

(define (mat-mul A B)

(let* ((N (length A))

(Bt (kernel* ((i (iota N))

(j (iota N)))

(vector-ref (vector-ref B j) i))))

(kernel* ((a A)

(b Bt))

(reduce + (kernel ((a a) (b b)) (* a b))))))

FIGURE 7.1. The core dense matrix multiplication kernel. This assumes we
are multiplying two square matrices, A and B.

interval computed using Student’s T-Test. Unless otherwise mentioned, each benchmark

was run ten times.

7.2. Dense Matrix Multiplication

Dense matrix multiplication is a staple of many scientific computation problems. Ma-

trix multiplication is a well studied problem with highly tuned solutions. Thus, it is also

useful for characterizing Harlan’s raw numeric performance.

The core matrix multiply kernel is shown in Figure 7.1. The code fragment works on

two square matrices, A and B of size N. The body of the outer kernel expression computes

a dot product of a row in A with one column in B. The columns of B are extracted by first

computing the transpose of B and storing it in Bt.

Figure 7.2 compares the execution time of several implementations of dense matrix

multiply at a variety of sizes. The results displayed here are the average of five runs. The

Harlan benchmark is based on the kernel showed in Figure 7.1. The OpenCL version is

a simple OpenCL kernel without a lot of hand tuning applied. This is meant to represent

“equivalent programmer effort” to the Harlan program. The code for the OpenCL matrix

multiplication kernel is shown in Figure 7.3. Finally, the CuBLAS version represents a

highly tuned, state of the art implementation of dense matrix multiply (DMM).

The CuBLAS version is by far the fastest, as would be expected. The OpenCL version

is roughly two to ten times faster than the Harlan version. One possible reason is that

Harlan does memory allocation within the kernel, while the OpenCL version allocates all

98

7. HARLAN CASE STUDIES

FIGURE 7.2. Dense matrix multiplication performance.

__kernel

void dmm(int N,

__global float *A,

__global float *B,

__global float *C)

{

int i = get_global_id(0);

int j = get_global_id(1);

#define ref(A, i, j) ((A)[(i) * N + (j)])

float acc = 0;

for(int k = 0; k < N; ++k) {

acc += ref(A, i, k) * ref(B, k, j);

}

ref(C, i, j) = acc;

}

FIGURE 7.3. OpenCL dense matrix multiplication kernel.

of its memory up front. Harlan does not yet have a scalable memory allocation algorithm

and instead all threads trying to allocate contend on doing atomic operations on a single

word in memory.

99

7. HARLAN CASE STUDIES

One interesting feature of the OpenCL data, and to a lesson extent the Harlan data, is

that the execution times fall into discrete bands. Manual inspection of the data suggests

that the slower times are when the matrix size is a prime number. The OpenCL program

is written so that it launches exactly the right number of work items and lets the OpenCL

runtime choose how to divide these into blocks. The block size must evenly divide the

total number of work items, which is obviously impossible if there is a prime number of

work items. The result is that much of the GPU’s parallelism goes unused. By contrast,

CUDA programs are usually written to over-approximate the number of work items and

have threads that fall outside the desired range drop out.

Inspection of the Harlan data suggests a similar explanation for the banding there as

well.

In an earlier version of this benchmark, the Harlan program was written with direct

references into B when needed rather than precomputing the transpose. This resulted

in significantly poorer performance. Precomputing the transpose improves the memory

access pattern, which makes up for the cost in doing the precomputation. Harlan’s opti-

mizer is almost powerful enough to do the transformation from explicitly representing the

transpose to computing it inline, which means future work could explore autotuning to

automatically find the best matrix multiplication algorithm.

7.3. Ray Tracing

Ray tracing is a way of rendering images that works by simulating the movement of

light rays through a scene. In contrast to rasterization techniques, which typically only

handle triangles, ray tracers can work with mathematical surfaces directly. Rather than ap-

proximate a sphere as a triangle mesh, for example, ray tracers can instead use the equation

defining a sphere to directly compute the intersection of a ray and that sphere.

We take advantage of this fact and represent objects in a scene as functions. The ray

tracer provides an object with a source and a direction for a ray, and the objects reports

whether this ray intersects the object. If the ray does intersect, the object also returns the

color that should be used for that portion of the object.

100

7. HARLAN CASE STUDIES

(define (render-image scene origin

width height)

(interpolate-range

(y 1.0 -1.0 height)

(interpolate-range

(x -1.0 1.0 width)

(let ((dir (unit-length (point3f x y 1))))

(match (reduce select-closest

(kernel ((object scene))

(object origin dir)))

((miss) (point3f 0 0 0))

((hit dist color) color))))))

FIGURE 7.4. A portion of the ray tracing program. This program rep-
resents a scene as a vector of procedures that computer the intersection
of an object with a ray. The program also makes use of custom syntax
in interpolate-range, which uniformly samples a range of floating
pointer numbers.

A portion of the ray tracer code is given in Figure 7.4. This code snippet makes use

of several of Harlan’s features. The interpolate-range construct is used to sample a

range of floating pointer numbers at a certain number of evenly spaced points, and illus-

trates the use of macros. In this example, interpolate range maps a pixel in the output

image into a point in space in the scene, which is later used to compute the direction of the

ray that intersects the given pixel. This construct is implemented as a macro that expands

into a kernel, enabling our ray tracer to compute many pixels in parallel.

For each pixel, the ray tracer computes a ray and then tests for intersection with each

object in the scene. The reduction with the select-closest function finds the nearest

intersection, and uses this as the final pixel value. The scene is represented as a vector

of objects, which are constructed by functions that return other functions. One example

object constructor is given below.

(define (make-sphere center radius)

(lambda (source direction)

. . . compute intersection of the ray and sphere. . .))

Having created many objects in this fashion, the main rendering kernel applies each

of these to a source and direction vector. This method of defining objects allows for easy

101

7. HARLAN CASE STUDIES

composition. For example, one might write a function that takes an object as an input and

produces an object that scales the input object by some factor.

The results of testing an object for intersection are reported through a simple ADT,

given below.

(define-datatype ray-result

(miss)

(hit float point3f-t))

Functions return (miss) when the ray does not intersect, and when the ray does intersect

they return a hit with a distance value (used by select-closest) and a color repre-

sented as a point3f-t value.

This way of structuring a ray tracer has some performance implications, which we

evaluate in Section 7.3.1.

7.3.1. Ray Tracing Performance. One potential risk with Harlan programs is that they

can lead to code with many more branches, and these branches could lead to poor perfor-

mance on the GPU. Indeed, Hong et al’s work on GPU graph algorithms was specifically

designed to minimize thread divergence by programming using a warp-centric model [41].

To measure this penalty, we ran two versions of the ray tracing program from the previous

section. In both versions, we render a randomly generated scene consisting of 100 scaled

and translated spheres. The scaling and translation is accomplished by creating wrapper

object functions that alter the incoming ray before intersecting the ray with the base sur-

face. For this benchmark, half of the objects were scaled and then translated, while the

other half were translated and then scaled. In one variant, objects with the same sequence

or transformations are stored together in the scene vector, while in the other variant these

are interleaved together. In the case where the scene is sorted, all threads in a block should

go the same direction at a branch, while the unsorted case should have more thread diver-

gence.

Figure 7.5 shows the results of running five iterations of this benchmark on Tesla. There

is not a significant difference in the performance for either variant. This is likely because

102

7. HARLAN CASE STUDIES

FIGURE 7.5. The effect of thread divergence on ray tracing performance. In
this particular case, thread divergence does not make a significant impact
on the overall execution time.

the parallelism is per pixel, rather than per object, and thus all threads consider the same

objects in the same order. This suggests that though Harlan programs have the potential to

have poor branch behavior, it may be possible to structure them to minimize these effects.

This is analogous to how specializing compilers for languages such as JavaScript can gain

impressive speedups based on the observation that programs are often far less irregular

than the language semantics allows [28].

7.3.2. Ray Tracing with KD-Trees. The previous section defined an extremely naive

ray tracing algorithm. One particular problem is that each ray must test for an intersection

with all surfaces in the scene. Many of these checks can be avoided, and KD-trees are

one way to do this. KD-trees are an instance of a binary space partition (BSP) algorithm.

BSP algorithms work by recursively dividing a space into half spaces that each contain a

portion of the objects in the scene. A KD-tree is a special case of a binary space partition

in which the faces of the subspaces are all aligned with either the X, Y or Z axis. For a

ray to intersect a surface contained within one of the volumes in the KD-tree it must also

intersect one of the faces of the prism. This gives us an easy way to eliminate large numbers

103

7. HARLAN CASE STUDIES

(A) Direct rendering (B) KD-tree rendering

FIGURE 7.6. An image rendered by ray tracing using a direct style and KD
trees. Importantly, they are identical.

of objects, since if the ray does not intersect the objects’ containing volume then there is no

reason to consider that object at all.

Implementing this algorithm leads to a code where all ray traverse the same tree struc-

ture in parallel, which is well-suited to Harlan’s support for ADTs.

The implementation of KD-trees in this section is by no means the first GPU-enabled

KD-tree implementation. For a discussion of several implementation techniques, see [65].

The discussion here is meant to emphasize how Harlan’s high level features simplifies

implementing a KD-tree.

As a preview, Figure 7.6 shows an example of an image rendered using both a direct

style algorithm, like the one shown in Figure 7.4, and the KD-tree algorithm discussed here.

It is important that they look the same, as the algorithms should not produce any visual

differences.

There are two main phases to KD-tree rendering. First, we must build the tree from a

given scene. Second, we perform the actual rendering. The tree only needs to be built once

per scene and then it can be reused for many subsequent images.

104

7. HARLAN CASE STUDIES

There are many possible strategies to build the tree. At first glance, it seems the ideal

strategy is to try to balance the number of objects in each subtree. This is in practice less

than ideal as it leads to often having to traverse a high number of tree nodes. Instead, a

good strategy is to try to build very large volumes that are completely empty with very

small volumes that contain objects in the scene. In this way, the algorithm can often prune

very large portions of the space very quickly. One popular technique is called the surface

area heuristic, which is built on the observation that the probability a ray will intersect with

a box is proportional to its surface area. At each step in building the tree, the algorithm

may choose to split along the X, Y or Z axis. The surface area heuristic computes a cost of

each potential split as follows.

C = ktraversal +NAkintersection

Here C is the cost of a potential volume, ktraversal is a constant representing the fixed cost

of reading a node from memory, N is the number of objects contained within the volume,

A is the surface area of that volume, and kintersection is the cost of computing an intersection

of a ray with an object. The two constants, ktraversal and kintersection, should be empirically

determined.

A set of objects in a volume gives a number of potential split points, which are each

of the edges of each object’s bounding boxes. We build the tree by estimating the cost

resulting from each of these splits and then choosing the best one. The core of the Harlan

code to do this is shown in Figure 7.7. This code evaluates splits on each axis and then

chooses the best one of the three and also compares against the cost if it were to just leave

the volume in tact. If the algorithm decides to split the volume, then it recursively builds

the tree of objects on the two subvolumes.

Figure 7.8 shows a dump of the tree data structure produced by running this algorithm

on a scene consisting of 8 spheres of radius 3 positioned on the corners of a 20× 20× 20

cube. Figure 7.9 shows a graphical depiction of a 2D projection of this scene and tree.

Having built the tree, the next step is to render an image. The algorithm is as follows.

105

7. HARLAN CASE STUDIES

(define (build-tree shapes dims)

(if (> (length shapes) 0)

(let ((nosplit-cost (* (box-surface-area dims)

(* (int->float (length shapes))

(intersection-cost))))

(best-x (find-split dims shapes (XAxis)))

(best-y (find-split dims shapes (YAxis)))

(best-z (find-split dims shapes (ZAxis))))

(match (best-split best-x (best-split best-y best-z))

((SplitCost axis plane cost)

(if (< cost nosplit-cost)

(let ((lefts (filter (lambda (shape)

(left-of? axis plane shape))

shapes))

(rights (filter (lambda (shape)

(right-of?

axis plane shape))

shapes)))

(match (split-box dims axis plane)

((BoxPair left-box right-box)

(Split axis plane

(build-tree lefts left-box)

(build-tree rights right-box)))))

(Leaf shapes)))))

(Leaf (vector))))

FIGURE 7.7. Harlan code to build a KD-tree.

(1) If the node is a leaf node, fall back on the direct rendering algorithm for the objects

contained at this node.

(2) If the node is a split node, determine which subspaces intersect the view ray and

recursively traverse each space that is intersected.

The code to do this in Harlan is given in Figure 7.10.

The traversal code represents the view ray parametrically, where the ray is defined as:

x = x0 + td

The traversal tracks two variables, t0 and t1, which represent the point at which the ray

enters the bounding volume and the point at which it exits. Then, for a given split the

106

7. HARLAN CASE STUDIES

(Split (ZAxis) -7

(Split (YAxis) -7

(Split (XAxis) -7

(Leaf [(Sphere -10 -10 -10 3)])

(Split (XAxis) 7

(Leaf [])

(Leaf [(Sphere 10 -10 -10 3)])))

(Split (YAxis) 7

(Leaf [])

(Split (XAxis) 7

(Split (XAxis) -7

(Leaf [(Sphere -10 10 -10 3)])

(Leaf []))

(Leaf [(Sphere 10 10 -10 3)]))))

(Split (ZAxis) 7

(Leaf [])

(Split (YAxis) 7

(Split (YAxis) -7

(Split (XAxis) 7

(Split

(XAxis) -7

(Leaf

[(Sphere -10 -10 10 3)])

(Leaf []))

(Leaf [(Sphere 10 -10 10 3)]))

(Leaf []))

(Split (XAxis) 7

(Split (XAxis) -7

(Leaf [(Sphere -10 10 10 3)])

(Leaf []))

(Leaf [(Sphere 10 10 10 3)])))))

FIGURE 7.8. A KD-Tree produced by Harlan.

traversal finds the t for which the ray intersections the split plane,

t =
s− x0

d

where s is the coordinate for the dividing plane, x0 represents the component of x0 in the

axis of the split and d is the component of d in the axis of the split.

There are three possibilities for t in relation to t0 and t1, which are illustrated in Fig-

ure 7.11. These possibilities illustrate the criteria our traversal code uses to decide which

107

7. HARLAN CASE STUDIES

Y

Z

Z = -7

Y = -7

Y = 7

Z = 7

Y = -7 Y = 7

FIGURE 7.9. A 2D projection of the scene and tree from Figure 7.6.

(define (traverse-kd-tree tree origin dir ray-bounds)

(match tree

((Leaf shapes) (select-point shapes origin dir))

((Split axis plane left right)

(let ((reverse (< (select-coord axis dir) 0)))

(let ((left (if reverse right left))

(right (if reverse left right)))

(let ((t (plane-intersection axis plane origin dir)))

(match ray-bounds

((FloatPair t0 t1)

(if (< t t0)

(traverse-kd-tree right origin dir ray-bounds)

(if (<= t t1)

(select-closest

(traverse-kd-tree left origin dir

(FloatPair t0 t))

(traverse-kd-tree right origin dir

(FloatPair t t1)))

(traverse-kd-tree right

origin

dir

ray-bounds)))))))))))

FIGURE 7.10. Harlan code to traverse a KD tree.

108

7. HARLAN CASE STUDIES

t0

t
t1

t0

t

t1

t0t

t1

(1)

(2)

(3)

FIGURE 7.11. Possible intersections of a ray and two bounding volumes.

subspaces to traverse. In (1), we have t > t1, which means the ray intersects the divid-

ing plane outside of the current bounding volume. In this case the algorithm only has to

traverse the left subspace. In (2), t0 < t < t1, which means the ray passes through both sub-

spaces. In this case, the traversal algorithm then needs to recur on both the left and right

halves. Finally, (3) has t < t0, which means the ray only intersects the right half-space and

we can avoid traversing the left subspace.

One final detail is that the ray might be oriented opposite to the left and right sub-

spaces. That is, Figure 7.11 assumes the ray travels from left to right. If the ray is traveling

the opposite direction, we simply need to reverse the left and right subspaces. This is

accomplished in the tree traversal code by checking whether the direction of the ray is

negative in the component of the dividing axis, shown in the test for (< (select-coord

axis dir) 0) in Figure 7.10.

Harlan’s support for high level functional language features, especially ADTs, greatly

simplified the implementation of the KD tree algorithm. Indeed, this was the author’s

first experience implementing a KD tree. Harlan made it easy to focus on implementing

the algorithm rather than the artifactual details of encoding the data structures for the

target machine. Some parts of the implementation, however, were more verbose than is

ideal. Several one-off data structures were needed, such as IntPair and FloatPair, as

well as comparison and merging functions for the various auxiliary structures. Harlan’s

expressiveness could be significantly improved with the addition of polymorphism, which

would eliminate the need to manually specialize structures at each type.

109

7. HARLAN CASE STUDIES

7.4. Graph Algorithms

Graph algorithms are the subject of much research lately due to their applications in

many domains such as social network analysis, product recommendation engines, web

search, intelligence, circuit design, and many others. These algorithms are interesting not

just because of their wide application, but because they involve irregular memory access

patterns with relatively low computation compared to the volume of data. This means

that many of the optimization techniques from more traditional dense linear algebra algo-

rithms are not nearly as effective on graph algorithms. GPUs are an attractive target for

graph algorithms in part because of their massive parallelism, but also because of their

much higher memory bandwidth than traditional CPUs. Still, this bandwidth is tuned

for regular, streaming access patterns which means irregular graph algorithms struggle

to achieve peak memory bandwidth. Despite these challenges, a number of recent works

have achieved good performance for GPU graph algorithms [23, 34, 41, 57, 81, 82, 88].

In this section, we will explore two graph algorithm implementations in Harlan. The

first is BFS in Section 7.4.1 and the second is strongly connected components in Section 7.4.2.

In general a graph G can be thought of as a pair of two sets, (V,E). V is the vertex set

while E is the edge set. E is a subset of V ×V , and (v1,v2)∈E means that vertex v1 is directly

connected to v2. Graphs can be directed, meaning that (v2,v1) ∈ E whenever (v,v2) ∈ E, or

undirected, which does not carry that same restriction. We will sometimes speak of the

transpose of a graph, which is the graph obtained by reversing all of the edges in E.

7.4.1. Breadth First Search. BFS is a relatively simple graph algorithm that also serves

as a basis for several other algorithms.

The goal of a breadth first search is to traverse all edges radiating from a starting node

such that all children of a node are visited before any of its children. The result is often

a tree of the edges and vertices traversed by the BFS. Consider the graph in Figure 7.12.

Each node in this graph has been labeled with the length of the path from node A when the

graph is traversed in a breadth-first fashion. The search in this example starts at node A,

then nodes B, D and E can be reached by following one additional edge. The next iteration

110

7. HARLAN CASE STUDIES

A (0) D (1)

B (1)

E (1)

G (2)

F (2)

C (2)

H (3)

FIGURE 7.12. An example graph on which to perform a breadth first search.

would visit nodes C, G and F, because these are reachable by one edge from one of B, D or

E. Finally, the last remaining node, H, is added in the third iteration because it is reachable

in one step from node G.

The first design consideration is how to represent the graph. There are many common

choices, such as edge lists, adjacency matrices or incidence matrices. These representations

are often isomorphic to matrices, as many graph algorithms are compactly expressed in

terms of linear algebra [49]. Figure 7.13 shows how the graph in Figure 7.12 looks in several

representations. For our purposes, we will represent a graph as a vector of nodes, where

each node is represented as a vector of node identifiers which have an incoming edge to

the current node. Figure 7.14 shows what the example graph would look like in Harlan.

Harlan’s format is essentially the transpose of the adjacency matrix in compressed sparse

row (CSR) format.

Incidentally, because of the way Harlan lays out data in regions, this vector-of-vectors

representation looks very similar in memory to a CSR representation. CSR is a popular

way of representing graphs because it helps lay out memory that needs to be accessed

together nearby.

This layout also admits convenient processing with Harlan kernels. We can now con-

sider a basic breadth first search kernel.

(kernel ((i (iota (length graph)))

111

7. HARLAN CASE STUDIES

{(A,B),(A,D),(A,E),(B,C),(D,G),(E,F),(F,D),(G,C),(G,F),(G,H)}

(A) Edge List

























0 1 0 1 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0

























(B) Adjacency matrix. Rows and columns are
in order of A through H. The edge (i, j) being
present is indicated by a 1 in entry (i, j).

































−1 1 0 0 0 0 0 0

−1 0 0 1 0 0 0 0

−1 0 0 0 1 0 0 0

0 −1 1 0 0 0 0 0

0 0 0 −1 0 0 1 0

0 0 0 0 −1 1 0 0

0 0 0 1 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 −1 1

































(C) Incidence matrix. Each row represents an
edge. Again, each column represents the ver-
tex A through H, in order. A -1 in a column
indicates that the edge in that row leaves that
vertex and a 1 indicates that the edge ends at
that vertex..

FIGURE 7.13. Several representations of the graph in Figure 7.12.

(vector

(vector) ;; A

(vector A) ;; B

(vector B G) ;; C

(vector A F) ;; D

(vector A) ;; E

(vector E G) ;; F

(vector D) ;; G

(vector G)) ;; H

FIGURE 7.14. Harlan’s representation of the graph in Figure 7.12. Assume
variables are in scope that match vertex names to identifiers. For example,
(let ((A 0) (B 1) ...) ...).

(c colors))

(match c

((black) (black))

((gray) (black))

((white)

(if (reduce or

112

7. HARLAN CASE STUDIES

(kernel ((j (vector-ref graph i)))

(match (vector-ref colors j)

((white) #f)

((gray) #t)

((black) #f))))

(gray)

(white)))))

This kernel works by creating a color vector, which indicates the processing state at each

node. At the beginning, all nodes are white except for the starting node which is gray.

Then, each white node checks if the color of any node with an incoming edge is gray. If so,

that node changes from white to gray. Gray nodes simply become black, indicating that

no more processing is required. This performs one level of the BFS, so some surrounding

code is needed to iterate this until a fixed point is reached.

The kernel as written now merely performs the traversal. Often we will want some

product of the traversal, such as a parent tree. This kernel can be modified to perform

some extra book keeping in order to produce a parent tree at the end.

7.4.1.1. Challenges and Possible Improvements. Many BFS algorithms implemented in

CUDA make heavy use of mutation, making it difficult to duplicate these algorithms in

Harlan. BFS algorithms can largely be broken down into top-down and bottom up traver-

sals. Some algorithms even combine both directions in order to improve performance [3].

The algorithm presented here in Harlan is an example of a bottom up algorithm, which

works well on searches where the frontier—that is, the current set of gray nodes—covers a

sizable subset of the graph. On the other hand, many algorithms are top-down, which are

very difficult to implement without mutation.

One possible extension to Harlan is a kernel-update! form, which would allow

kernels to do limited mutation to vectors without sacrificing determinism. Figure 7.15

shows an example of how kernel-update! could work, including both the code for a

program and the output from running the program. The kernel-update! expression

113

7. HARLAN CASE STUDIES

(module

(define (main)

(let ((a* (iota 10)))

(println a*)

(kernel-update!

((a a*)

<- (i (iota 10)))

(* a i))

(println a*)

0))

(A) Code

[0 1 2 3 4 5 6 7 8 9]

[0 1 4 9 16 25 36 49 64 81]

(B) Output

FIGURE 7.15. An example of how kernel-update! might work.

indicates that it iterates over a* and (iota 10), binding a to an element in a* and i to

the corresponding element in (iota 10). The difference is that while a normal kernel

form returns a new vector, kernel-update! overwrites a* with the new values. In this

way, it is similar to the following expression:

(set! a* (kernel ((a a*) (i (iota 10))) (* a i)))

Doing this safely would require careful analysis to ensure that this mutation is not unex-

pectedly observed. Alternatively, the compiler might be able to automatically replace a*

with the updated version if it can detect that the old version is not read again, without

requiring any changes to the language.

The kernel-update! form as described here would not be powerful enough to

switch to a top-down BFS algorithm, but it might be able to avoid some memory trans-

fer cost by reusing the storage space for each intermediate result.

7.4.2. Strongly Connected Components. In a directed graph, a strongly connected

component (SCC) is a set of nodes such that each node in the component has a path to every

other node in the component. Algorithms for finding the strongly connected components

in a graph have a variety of applications. As we saw in Chapter 5, the Harlan compiler

itself currently uses Tarjan’s Algorithm [79] to find sets of functions that may recursively

call each other in order to remove the recursion.

114

7. HARLAN CASE STUDIES

There are several algorithms for finding strongly connected components in parallel [30,

43, 56, 73, 74]. Many of these are based on breadth-first searches, as this is easier to paral-

lelize than the depth-first search used by Tarjan’s algorithm. Graph problems like breadth-

first search already have algorithms for the GPU which could be adapted to find strongly

connected components [7, 35, 42].

The algorithm presented here is based on Orzan’s coloring algorithm [61]. This algo-

rithm uses two traversals. The first assigns colors to each node, while the second uses the

coloring from the previous traversal to assign components. Not all components will be

discovered during one iteration of these two steps, so they are repeated until all vertices

have been assigned a components.

To assign colors, each vertex is initialized with its own vertex identifier as its color.

These then propagate forward through the graph, and each vertex takes the largest of its

incoming colors.

The second traversal starts by determining the roots of each component, which are the

vertices whose color matches its identifier. Then any component that is reachable back-

wards from the root and has the same color as the root is part of that component.

We are now ready to develop the code to compute SCCs in Harlan. The Harlan code

will utilize two data structures, graph and reverse-graph, which are the graph and the

graph with all edges reversed. These will be used to perform the backward traversals and

forward traversals. Surprisingly, the reverse graph is used for forward traversals while the

normal graph is used for backward traversals. This is because Harlan processes vertices in

a bottom-up fashion.

The code to assign vertex colors is shown in Figure 7.16. This function also uses a

components vector which is used to avoid processing vertices that already have a com-

ponent assigned. The components vector is made up of the following data type:

(define-datatype Component

(None)

(Color int))

115

7. HARLAN CASE STUDIES

(define (color-vertices reverse-graph colors components)

(let ((next-colors

(kernel ((color colors)

(edges reverse-graph)

(comp components))

(match comp

((None)

(if (> (length edges) 0)

(max color (inner-reduce max

(kernel ((e edges))

(vector-ref colors e))))

color))

((Color _) -1)))))

(if (= colors next-colors)

colors

(color-vertices reverse-graph next-colors components))))

FIGURE 7.16. Harlan SCC coloring code.

Obviously, (None) indicates that a component is not yet assigned, while (Color i) indi-

cates that a vertex has component i. The code in Figure 7.16 is very similar to the breadth-

first search code we saw earlier.

The function that assigns components from the coloring is given in Figure 7.17. This

has a similar structure, as it is BFS traversal of the graph. This time, it uses the regu-

lar graph structure in order to effect a backwards traversal. Much of the length of this

function is the lambda expression passed to the reduction, which merges the incoming

component assignments along with the current vertex’ coloring.

Finally, the code to iterate the two previous functions is shown in Figure 7.18. This

simply does the coloring and component assignment steps, iterating them until a fixed

point is reached. The components-eq function is needed instead of just = because Harlan

currently does not synthesize equality operators for most ADTs.

Knowing how to perform breadth first search and starting with an appropriate SCC

detection algorithm, we have seen that it is not too hard to implement SCCs in Harlan.

116

7. HARLAN CASE STUDIES

(define (assign-components graph colors components)

(let ((next-components

(kernel ((id (iota (length graph)))

(color colors)

(comp components)

(edges graph))

(match comp

((Color _) comp)

((None)

(if (= id (vector-ref colors id))

(Color id)

(if (> (length edges) 0)

(inner-reduce (lambda (a b)

(match a

((None)

(match b

((None) (None))

((Color i)

(if (= i color)

(Color i)

(None)))))

((Color i)

(if (= i color)

(Color i)

(match b

((None) (None))

((Color i)

(if (= i color)

(Color i)

(None))))))))

(kernel ((e edges))

(vector-ref components e)))

(None))))))))

(if (components-eq components next-components)

components

(assign-components graph colors next-components))))

FIGURE 7.17. Harlan SCC component assignment code.

7.5. Integrating with external applications

Languages generally cannot live in a vacuum. Many practitioners already have large

applications and it would be unreasonable to ask them to rewrite the entire application in a

117

7. HARLAN CASE STUDIES

(define (update-components graph reverse-graph components)

(let ((colors

(color-vertices reverse-graph

(iota (length reverse-graph))

components)))

(let ((new-components

(assign-components graph colors components)))

(if (components-eq components new-components)

components

(update-components graph

reverse-graph

new-components)))))

FIGURE 7.18. Harlan SCC driver code.

new language. Instead, Harlan can both call into external code and provides mechanisms

to make its code available to other applications.

The fact that Harlan compiles to C++ with OpenCL simplifies many aspects of the

foreign function interface (FFI). Many existing languages include C interfaces, so the exist-

ing C interface can be used to interact with code written in Harlan as well. Additionally,

Harlan inherits most of the calling convention of the host system’s C compiler, further

simplifying integration with external code.

Still, Harlan differs from C++ in several ways, which leads to several challenges for an

FFI. These challenges include:

• Name mangling.

• Mapping Harlan and C++ types.

• Mutation.

We now address these challenges in turn.

7.5.1. Name mangling. Harlan, due to its Scheme heritage, allows several characters

in identifiers that are illegal in C++. For example, dashes are frequently used as word

separators within identifiers, while in C++ underscores or camel case are used. There are

several options to address this:

(1) Use only legal C++ names in Harlan functions that may be called externally.

(2) Restrict the characters allowed in Harlan identifiers. This is less than ideal.

118

7. HARLAN CASE STUDIES

(3) Provide a preprocessor to translate Harlan names in C++ files into their mangled

equivalents.

(4) Require the programmer to type the mangled name when calling a Harlan func-

tion from C++.

Options 1 and 4 are available without any support from the compiler, and these are

currently the allowed options. A preprocessor would easily be written, as it requires little

more than a find and replace in a source code file.

7.5.2. Mapping Harlan and C++ types. Type systems vary significantly between lan-

guages. This is especially true with Harlan, due to its region-based memory system. Some

Harlan’s base types, such as int, float or char correspond directly to a type in C++.

Even Harlan’s more complex types, like ADTs or procedures, are compiled into C++ structs,

which facilitates interoperability between Harlan and C++.

There are two variants to consider. First, how can Harlan interact with data in a native

C++ format? Second, how can C++ manipulate data generated by Harlan?

To address the first question, Harlan has some support for native C++ types. In the case

of pointers, Harlan includes functions like unsafe-deref-int or unsafe-set!-int

(and variants for float and char data). These naturally include all of the safety of direct

pointer manipulation in C++, but to allow Harlan to read and write simple data from C++

code.

At the moment, Harlan does not support C++ data such as structs and classes. Much of

the compiler does support these features, since they are used to implement Harlan features

such as ADTs, meaning if needed, facilities for manipulating structs or classes in C++ could

be added to Harlan’s surface language without too much trouble.

For the second question, the Harlan compiler could be extended to generate C++ ac-

cessors for Harlan data. This includes tools to interact with the region system (although

the programmer must manage region data manually and explicitly) as well as wrappers to

work with more complex objects as though they were native C++ objects. This is similar to

119

7. HARLAN CASE STUDIES

tools such as SWIG [4], but more tailored to the specifics of Harlan’s data types and region

system.

7.5.3. Mutation. Data in Harlan is immutable, but this is not the case in many lan-

guages that Harlan will interact with. The Harlan FFI currently does not specify the be-

havior in the presence of data mutated by outside sources. In many cases, mutation will

probably be safe, but Harlan optimizes code under the assumption that data does not

change. Were this an invalid assumption, Harlan programs could behave in unpredictable

ways. More precise, permissive and safe rules could be the subject of future work.

7.5.4. Raw Data Import. Although Harlan does not natively operate on machine-level

pointers, it does provide an unsafe API to read and write from machine pointers. These

procedures cannot be used from kernels, because heap data in Harlan cannot move to the

GPU unless it is stored in a region. Instead, these procedures provide a crude way for

Harlan programs to copy data out of a buffer provided by an external application. Once

the data has been copied, the Harlan code can compute with it as normal and then use the

same unsafe API to copy the results back to the calling program.

This API also allows Harlan programs to directly call some C library functions.

The API is considered unsafe because it does not perform any array bounds checking

or have any way of determining whether pointers actually point to the type of data they

claim to. Thus, it is recommended that one of the higher level foreign function interfaces

be used when possible.

7.6. GPU Performance Characterization

Harlan has a number of implementation decisions that depend on characteristics of the

target architecture. In this section, we will explore several microbenchmarks that attempt

to measure some of these characteristics.

7.6.1. GPU Memory Performance. We argued in Section 4.2.3 that the per-transfer

overhead is small relative to the time spent doing the actual transfer. Figure 7.19 shows

120

7. HARLAN CASE STUDIES

FIGURE 7.19. Transfer times between the CPU and GPU memory for
buffers of various sizes.

the total time to transfer data of varying sizes from the host memory to the device memory.

The amount of time is relatively flat until about 8KB and afterwards it increases linearly.

Figure 7.20 looks at memory bandwidth in a different way, by transferring a total

amount of 256MB but breaking it into a number of chunks of various sizes. As expected,

small chunk sizes take significantly longer, but after around 8MB the overhead for many

transfers is relatively small.

Regions in Harlan start at some minimum size and grow as necessary to accommodate

their contents. The data present here suggest that there is no reason to make the mini-

mum region size smaller than 8KB. The small threshold for where the bandwidth costs

overtake the latency costs validate our strategy of assigning data into as many regions as

possible. Data structures will likely already be larger than this threshold for the increased

throughput of the GPU to overcome the cost of transferring the data over the relatively

slow PCI-Express bus.

7.6.2. Roofline Model. The roofline model [85] is a simple way to visualize the im-

pact of memory bandwidth and computational throughput for processors. It compares

121

7. HARLAN CASE STUDIES

FIGURE 7.20. Time to transfer 256MB of data from the CPU to the GPU,
dividing the total data into chunks. The per-transfer overhead is minimal
when the chunk size is 8MB or greater.

the achieved floating point operations per second (flops) with the arithmetic intensity, or

number of floating point operations per byte of memory traffic, of a computation. Up to

a certain threshold, the flops increase linearly as the memory system is not able to pro-

vide data fast enough to keep the compute units busy. After that threshold, the curve is

basically flat, as there is enough work to keep all of the compute units busy.

Figure 7.21 shows an empirically determined roofline model for the NVIDIA Tesla

K40c GPU in Tesla. This was produced by a benchmark that computes a Taylor Series

expansion for a vector of many randomly determined points. The Taylor Series expansion

makes it easy to vary the arithmetic intensity of the computation by controlling how many

iterations of the expansion are computed. The best fit curve shows a peak computation

rate of 1.61 Tflops and memory transfer rate of 308 GB/sec. These match the published

specifications, although the memory bandwidth is higher than expected [18]. One inter-

esting phenomenon is that the performance drops off after a time. This is because the

GPU can only run at full power for a limited time and will slow down in order to keep

the average power consumption within its design limits. The curve in Figure 7.21 labeled

122

7. HARLAN CASE STUDIES

FIGURE 7.21. Roofline model for NVIDIA Tesla K40c GPU.

“Performance with sleeps enabled” shows what happens when the benchmark code in-

serts a delay between each iteration after a certain point. This reduces the average power

consumption so that each iteration runs at full speed.

Models such as this could be useful to Harlan in the future, since Harlan reserves broad

latitude in scheduling kernels. Although currently kernels are always scheduled onto a

single OpenCL device (typically a GPU), future versions of Harlan could support multiple

devices at once. The Harlan compiler could analyze kernels in order to estimate its arith-

metic intensity and then decide whether it is worth sending the data across the PCI bus to

compute on the GPU or if it would be better to simply compute on the host CPU.

123

7. HARLAN CASE STUDIES

FIGURE 7.22. Vector addition in Harlan compared with vector addition in
CUBLAS.

7.6.3. Vector Addition. Figure 7.22 shows the results of a vector addition benchmark

in Harlan compared with a similar call to CUBLAS. The timings include the time to transfer

memory as well as the actual kernel execution time. Harlan significantly under performs

CUBLAS for vector addition. We suspect this is due to Harlan introducing more region

transfers than are necessary, and that future optimizations can alleviate this problem.

7.6.4. Dot Product. Harlan performs much better on the dot product benchmark, as

shown in Figure 7.23. Here, Harlan’s performance is around an order of magnitude slower

than the CuBLAS dot product.

124

7. HARLAN CASE STUDIES

FIGURE 7.23. Dot product in Harlan compared with dot product in CUBLAS.

125

CHAPTER 8

Conclusion

While GPUs are powerful data parallel processors, programming them is challenging. This

difficulty is in part because of the architectural differences between CPUs and GPUs, but

one particular challenge is handling the movement of data between the two processors.

Programming languages can help.

We have seen in the preceding chapters that region-based memory management is an

effective technique for enabling high level features on GPUs and similar devices. In Chap-

ter 4, we were introduced to Harlan, a high level data parallel programming language.

Harlan enables GPU computing with its lightweight kernel syntax, yet includes a full

complement of functional programming features such as hygienic macros, algebraic data

types and first class procedures. Harlan’s high level features are enabled through its use of

RBMM. We saw this in more detail in Chapter 5, when we saw how the Harlan language

and its region system are implemented, and how the region system enables rich structures

like trees and first class procedures to move between memories.

In Chapter 6, we explored the semantic properties of a model of Harlan’s region system.

The model language, Core Harlan, includes enough features to illustrate the challenges in

moving regions between distinct memories. This is especially true for closures, where it

is normally not obvious what data might be captured in a closure. The type safety proof

shows that well-typed Core Harlan programs behave well and informs the full Harlan

implementation in what invariants its type checker must enforce.

Finally, in Chapter 7 we saw several programs written in Harlan. These show that

the language is expressive and simplifies the development of challenging GPU codes. Pro-

grams in Harlan can perform as well as programs written in lower level languages, though

there is room for more optimization.

126

8. CONCLUSION

The work described in this dissertation shows that region based memory is a useful

tool for language implementers to increase language expressiveness even in the presence

of multiple memories. Throughout this dissertation, we have touched on several avenues

for future work, some of which we will summarize here. While we have focused on the

use of regions in CPU-GPU systems, work in other distributed systems is worth pursuing.

One promising step in this direction would be to generalize the semantics to support more

than two compute devices. Adding the ability to subdivide regions would enable Harlan

to more easily handle larger data sets and divide and conquer algorithms. In addition,

the design of Harlan leaves the compiler room to apply aggressive transformations and

optimizations. Furthermore, different choices in data layout and representation could lead

to significant performance improvements. Harlan already performs some of these high

level optimizations, but additional work is needed in this area.

Region-based memory management is an effective way of enabling high level features

in languages targeting machines with multiple disjoint memories.

127

Bibliography

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams, IV, D. P. Friedman, E. Kohlbecker, G. L.

Steele, Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and

M. Wand. Revised4 report on the algorithmic language scheme. SIGPLAN Lisp Pointers, IV(3):1–55, July

1991.

[2] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: expressing locality and inde-

pendence with logical regions. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los Alamitos, CA, USA, 2012. IEEE Computer

Society Press.

[3] Scott Beamer, Asanović, Krste, and David Patterson. Direction-Optimizing Breadth-First Search.

Scientific Programming, 21(3-4):137–148, 2013.

[4] David M. Beazley. Swig: An easy to use tool for integrating scripting languages with c and c++. In Proceed-

ings of the 4th Conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4, TCLTK’96, pages 15–15, Berkeley,

CA, USA, 1996. USENIX Association.

[5] Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew Fluet. Lazy tree splitting. In Proceed-

ings of the 15th ACM SIGPLAN international conference on Functional programming, ICFP ’10, pages 93–104,

New York, NY, USA, 2010. ACM.

[6] Lars Bergstrom and John Reppy. Nested data-parallelism on the gpu. In Proceedings of the 17th ACM

SIGPLAN international conference on Functional programming, ICFP ’12, pages 247–258, New York, NY, USA,

2012. ACM.

[7] M. Bernaschi, M. Bisson, E. Mastrostefano, and D. Rossetti. Breadth first search on APEnet+. In High

Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 248–253, 2012.

[8] Guy E Blelloch. Vector models for data-parallel computing, volume 75. MIT press Cambridge, 1990.

[9] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco Zagha. Im-

plementation of a portable nested data-parallel language. Journal of Parallel and Distributed Computing,

21(1):4–14, April 1994.

[10] Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of nesl. In ACM

SIGPLAN International Conference on Functional Programming, pages 213–225, May 1996.

128

BIBLIOGRAPHY

[11] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel programming must be

deterministic by default. In Proceedings of the First USENIX conference on Hot topics in parallelism, HotPar’09,

pages 4–4, Berkeley, CA, USA, 2009. USENIX Association.

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Han-

rahan. Brook for gpus: stream computing on graphics hardware. In ACM SIGGRAPH 2004 Papers, SIG-

GRAPH ’04, pages 777–786, New York, NY, USA, 2004. ACM.

[13] Bryan C. Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: compiling an embedded data

parallel language. In Calin Cascaval and Pen-Chung Yew, editors, PPOPP, pages 47–56. ACM, 2011.

[14] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. Accelerating

Haskell array codes with multicore GPUs. In Proceedings of the sixth workshop on Declarative aspects of

multicore programming, DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM.

[15] Arthur Charguraud. The locally nameless representation. Journal of Automated Reasoning, 49(3):363–408,

2012.

[16] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea. NOVA: A functional

language for data parallelism. Technical Report NVR-2013-001, NVIDIA, July 2013.

[17] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Elsevier Science, October 2003.

[18] NVIDIA Corporation. Tesla k40 and k80 gpu accelerators for servers. http://web.archive.org/

web/20151104151402/http://www.nvidia.com/object/tesla-servers.html, 2015. Ac-

cessed: November 4, 2015.

[19] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure semantics.

In Proceedings of the third ACM SIGPLAN international conference on Functional programming, ICFP ’98, pages

301–312, New York, NY, USA, 1998. ACM.

[20] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. Gpu programming in a high level language:

Compiling x10 to cuda. In Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 8:1–8:10,

New York, NY, USA, 2011. ACM.

[21] J. Anish Dev. Bitcoin mining acceleration and performance quantification. In Electrical and Computer Engi-

neering (CCECE), 2014 IEEE 27th Canadian Conference on, pages 1–6, May 2014.

[22] Chucky Ellison. A Formal Semantics of C with Applications. PhD thesis, University of Illinois, July 2012.

[23] Massimo Bernaschi Enrico Mastrostefano. Efficient breadth first search on multi-GPU systems. Journal of

Parallel and Distributed Computing, 73(9):1292–1305, 2013.

[24] C. Flanagan and M. Felleisen. The semantics of future and an application. Journal of Functional Program-

ming, 9(01):1–31, 1999.

[25] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT Design Inc., 2010. http:

//racket-lang.org/tr1/.

129

http://web.archive.org/web/20151104151402/http://www.nvidia.com/object/tesla-servers.html
http://web.archive.org/web/20151104151402/http://www.nvidia.com/object/tesla-servers.html
http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

BIBLIOGRAPHY

[26] Matthew Fluet and Greg Morrisett. Monadic regions. In Proceedings of the Ninth ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP ’04, pages 103–114, New York, NY, USA, 2004. ACM.

[27] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5 multi-

threaded language. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design

and Implementation (PLDI), pages 212–223, Montreal, Quebec, Canada, June 1998. Proceedings published

ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

[28] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat,

Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick

Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time type specializa-

tion for dynamic languages. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’09, pages 465–478, New York, NY, USA, 2009. ACM.

[29] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. High perfor-

mance discrete fourier transforms on graphics processors. In Proceedings of the 2008 ACM/IEEE conference

on Supercomputing. IEEE, 2008. This is a revision of the original paper that corrects a few typos.

[30] John Greiner. A comparison of parallel algorithms for connected components. In Proceedings of the Sixth

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’94, pages 16–25, New York, NY,

USA, 1994. ACM.

[31] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. Region-

based memory management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-

ming language design and implementation, PLDI ’02, pages 282–293, New York, NY, USA, 2002. ACM.

[32] Axel Habermaier. The model of computation of CUDA and its formal semantics. Technical Report 2011-

14, Informatik, 2011.

[33] Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In Category theory and com-

puter science, pages 140–157. Springer, 1987.

[34] Pawan Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU Using CUDA. In

Proceedings of the 14th International Conference on High Performance Computing, HiPC’07, pages 197–208,

Berlin, Heidelberg, 2007. Springer-Verlag.

[35] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU using CUDA. In

Proceedings of the 14th International Conference on High Performance Computing, HiPC’07, pages 197–208,

Berlin, Heidelberg, 2007. Springer-Verlag.

[36] Mark Harris. CUDA 7 release candidate feature overview: C++11, new

libraries, and more. http://devblogs.nvidia.com/parallelforall/

cuda-7-release-candidate-feature-overview/, January 2015. Accessed: November 3,

2015.

130

http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/
http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/

BIBLIOGRAPHY

[37] Chris Hathhorn, Michela Becchi, William L Harrison, and Adam Procter. Formal semantics of heteroge-

neous CUDA-C: A modular approach with applications. arXiv preprint arXiv:1211.6193, 2012.

[38] Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine.

Declarative parallel programming for GPUs. In Proceedings of the International Conference on Parallel Com-

puting (ParCo), September 2011.

[39] Eric Holk, Ryan Newton, Jeremy Siek, and Andrew Lumsdaine. Region-based memory management

for GPU programming languages: Enabling rich data structures on a spartan host. In Proceedings of the

2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications,

OOPSLA ’14, pages 141–155, New York, NY, USA, 2014. ACM.

[40] Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D. Matsakis. GPU pro-

gramming in Rust: Implementing high-level abstractions in a systems-level language. In Proceedings of the

18th International Workshop on High-Level Parallel Programming Models and Supportive Environments, May

2013.

[41] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA Graph Al-

gorithms at Maximum Warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel

Programming, PPoPP ’11, pages 267–276, New York, NY, USA, 2011. ACM.

[42] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA graph algo-

rithms at maximum warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel

Programming, PPoPP ’11, pages 267–276, New York, NY, USA, 2011. ACM.

[43] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. On fast parallel detection of strongly connected

components (SCC) in small-world graphs. Technical report, Stanford University, mar 2013.

[44] Matt Humphreys and Greg Pharr, editors. Physically Based Rendering. Morgan Kaufmann, second edition

edition, 2010.

[45] Intel. Threading building blocks. https://www.threadingbuildingblocks.org/, 2013.

[46] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard, and David I.

August. Automatic CPU-GPU communication management and optimization. In Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation, PLDI ’11, pages 142–151,

New York, NY, USA, 2011. ACM.

[47] Feng Ji, Heshan Lin, and Xiaosong Ma. Rsvm: A region-based software virtual memory for gpu. In Pro-

ceedings of the 22Nd International Conference on Parallel Architectures and Compilation Techniques, PACT ’13,

pages 269–278, Piscataway, NJ, USA, 2013. IEEE Press.

[48] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Functional program-

ming languages and computer architecture, pages 190–203. Springer, 1985.

131

https://www.threadingbuildingblocks.org/

BIBLIOGRAPHY

[49] Jeremy Kepner and John Gilbert, editors. Graph Algorithms in the Language of Linear Algebra. Society for

Industrial and Applied Mathematics, 2011.

[50] Khronos OpenCL Working Group. The OpenCL Specification. Khronos OpenCL Working Group, Novem-

ber 2012. http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[51] Oleg Kiselyov and Chung-chieh Shan. Lightweight monadic regions. In Proceedings of the First ACM SIG-

PLAN Symposium on Haskell, Haskell ’08, pages 1–12, New York, NY, USA, 2008. ACM.

[52] E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics hardware. In Proceedings of

the 2001 ACM/IEEE Conference on Supercomputing, SC ’01, pages 55–55, New York, NY, USA, 2001. ACM.

[53] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen,

Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and

Pradeep Dubey. Debunking the 100x GPU vs. CPU myth: An evaluation of throughput computing on

CPU and GPU. In Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA

’10, pages 451–460, New York, NY, USA, 2010. ACM.

[54] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0.

[55] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Optimising purely

functional GPU programs. In Proceedings of the 18th ACM SIGPLAN international conference on Functional

programming, ICFP ’13, pages 49–60, New York, NY, USA, 2013. ACM.

[56] William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence Rauchwerger. Finding

strongly connected components in distributed graphs. J. Parallel Distrib. Comput., 65(8):901–910, August

2005.

[57] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph traversal. In Proceedings

of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’12, pages

117–128. ACM, 2012.

[58] Mozilla. The Rust programming language. http://www.rust-lang.org/, 2013.

[59] NVIDIA. CUDA C Programming Guide. NVIDIA, October 2012. http://docs.nvidia.com/cuda/

pdf/CUDA_C_Programming_Guide.pdf.

[60] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. In Irish Signals Systems Conference

2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC

2014/CIICT 2014). 25th IET, pages 280–285, June 2014.

[61] Simona Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free University of Amster-

dam, 2004.

[62] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn, and Tim

Purcell. A Survey of General-Purpose Computation on Graphics Hardware. In Eurographics 2005, State of

the Art Reports, pages 21–51, September 2005.

132

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.rust-lang.org/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY

[63] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David

McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin Stich. Optix: a general purpose

ray tracing engine. In ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 66:1–66:13, New York, NY,

USA, 2010. ACM.

[64] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN 1988 Confer-

ence on Programming Language Design and Implementation, PLDI ’88, pages 199–208, New York, NY, USA,

1988. ACM.

[65] Matt Pharr and Greg Humphreys. Chapter four - primitives and intersection acceleration. In Matt

Humphreys and Greg Pharr, editors, Physically Based Rendering, pages 182 – 258. Morgan Kaufmann,

Boston, second edition edition, 2010.

[66] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Com-

puter Science Department, Aarhus University, Aarhus, Denmark, 1981.

[67] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. EigenCFA: accelerating flow anal-

ysis with GPUs. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL ’11, pages 511–522, New York, NY, USA, 2011. ACM.

[68] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of the

ACM Annual Conference - Volume 2, ACM ’72, pages 717–740, New York, NY, USA, 1972. ACM.

[69] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th

Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74, Washington, DC, USA, 2002.

IEEE Computer Society.

[70] Grigore Roşu. K: a Rewrite-based Framework for Modular Language Design, Semantics, Analysis and

Implementation. Technical Report UIUCDCS-R-2006-2802, Computer Science Department, University of

Illinois at Urbana-Champaign, 2006.

[71] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei W.

Hwu. Optimization principles and application performance evaluation of a multithreaded gpu using

cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

PPoPP ’08, pages 73–82, New York, NY, USA, 2008. ACM.

[72] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass infrastructure for compiler education.

In Proceedings of the ninth ACM SIGPLAN international conference on Functional programming, ICFP ’04,

pages 201–212, New York, NY, USA, 2004. ACM.

[73] Warren Schudy. Finding strongly connected components in parallel using O(log2 n) reachability queries.

In Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA ’08,

pages 146–151, New York, NY, USA, 2008. ACM.

133

BIBLIOGRAPHY

[74] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity algorithm. Journal of Algorithms, 3(1):57

– 67, 1982.

[75] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens. Efficient computation of

sum-products on gpus through software-managed cache. In Proceedings of the 22Nd Annual International

Conference on Supercomputing, ICS ’08, pages 309–318, New York, NY, USA, 2008. ACM.

[76] Guy L. Steele, Jr. and W. Daniel Hillis. Connection machine lisp: Fine-grained parallel symbolic process-

ing. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP ’86, pages 279–297,

New York, NY, USA, 1986. ACM.

[77] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya A. Ranawake, and Charles V.

Packer. Beowulf: A parallel workstation for scientific computation. In In Proceedings of the 24th Interna-

tional Conference on Parallel Processing, pages 11–14. CRC Press, 1995.

[78] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leiserson.

The Pochoir stencil compiler. In Proceedings of the 23rd ACM symposium on Parallelism in algorithms and

architectures, SPAA ’11, pages 117–128, New York, NY, USA, 2011. ACM.

[79] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160,

1972.

[80] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Computation,

132(2):109 – 176, 1997.

[81] K. Ueno and T. Suzumura. Parallel distributed breadth first search on GPU. In 2013 20th International

Conference on High Performance Computing (HiPC), pages 314–323, December 2013.

[82] Koji Ueno and Toyotaro Suzumura. Highly scalable graph search for the graph500 benchmark. In Pro-

ceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing, pages

149–160. ACM, 2012.

[83] F. Vasquez, E. M. Garzon, J. A. Martinez, and J.J.Fernandez. The sparse matrix vector product on GPUs.

Technical report, University of Almeria, jun 2009.

[84] Larisse Voufo, Marcin Zalewski, and Andrew Lumsdaine. Scoping rules on a platter: A framework for

understanding and specifying name binding. In Proceedings of the 10th ACM SIGPLAN Workshop on Generic

Programming, WGP ’14, pages 59–70, New York, NY, USA, 2014. ACM.

[85] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance

model for multicore architectures. Communications of the ACM, 52(4):65–76, April 2009.

[86] Edward Z. Yang, Giovanni Campagna, Ömer S. Ağacan, Ahmed El-Hassany, Abhishek Kulkarni, and

Ryan R. Newton. Efficient communication and collection with compact normal forms. In Proceedings of

the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, pages 362–374,

New York, NY, USA, 2015. ACM.

134

BIBLIOGRAPHY

[87] Ke Yang, Bingsheng He, Qiong Luo, Pedro V. Sander, and Jiaoying Shi. Stack-based parallel recursion

on graphics processors. In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of

parallel programming, PPoPP ’09, pages 299–300, New York, NY, USA, 2009. ACM.

[88] Peter Zhang, Eric Holk, John Matty, Samantha Misurda, Marcin Zalewski, Scott McMillan, Jonathan Chu,

and Andrew Lumsdaine. Dynamic parallelism for simple and efficient GPU graph algorithms. In 5th

Workshop on Irregular Applications: Architectures and Algorithms (IA3), November 2015. To Appear.

135

Eric Holk

Research Interests
Programming language design and implementation, semantics, type systems, compilers,
GPU programming, parallel architectures, operating systems.

Education
Indiana University
Ph.D., Computer Science, June 2016.

Indiana University
M.S., Computer Science, May 2013.

Rose-Hulman Institute of Technology
B.S., Computer Science and Mathematics, May 2006.

Florida College
A.A., May 2003.

Employment Experience
Google, Software Engineer, January 2016 – Present.

Indiana University, Research Assistant, August 2009 – December 2015.

University of Utah, Research Associate, May 2013 – August 2013.

Mozilla Corporation, Research Engineering Intern, May 2012 – August 2012.

Mozilla Corporation, Research Engineering Intern, May 2011 – August 2011.

Microsoft Corporation, Software Design Engineer, August 2006 – August 2009.

Sandia National Laboratories, Technical Intern, June 2005 – August 2005.

Rose-Hulman Institute of Technology, Learning Center, Peer Tutor, May 2004 –
May 2006.

Publications
[1] B. J. Svensson, M. Vollmer, Eric Holk, T. L. McDonell, and R. R. Newton, “Con-

verting data-parallelism to task-parallelism by rewrites: Purely functional programs
across multiple GPUs,” in Proceedings of the 4th ACM SIGPLAN Workshop on Func-
tional High-Performance Computing (FHPC 2015), Sep. 2015.

[2] M. Vollmer, B. J. Svensson, Eric Holk, and R. R. Newton, “Meta-programming
and auto-tuning in the search for high performance GPU code,” in Proceedings of the
4th ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC
2015), Sep. 2015.

[3] P. Zhang, Eric Holk, J. Matty, S. Misurda, M. Zalewski, J. Chu, S. McMillan, and
A. Lumsdaine, “Dynamic parallelism for simple and eicient GPU graph algorithms,”
in Proceedings of the 5th Workshop on Irregular Applications: Architectures and Al-
gorithms (IA3 2015), Nov. 2015.

[4] Eric Holk, R. Newton, J. Siek, and A. Lumsdaine, “Region-based memory manage-
ment for GPU programming languages: Enabling rich data structures on a spartan
host,” in Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA 2014), New York, NY,
USA: ACM, Oct. 2014.

[5] J. A. Cottom, Eric Holk, W. Byrd, A. Chauhan, and A. Lumsdaine, “High level
coordination speciication,” in Workshop on Leveraging Abstractions and Semantics
in High-performance Computing (LASH-C 2014), Feb. 2013.

[6] Eric Holk, M. Pathirage, A. Chauhan, A. Lumsdaine, and N. D. Matsakis, “GPU
programming in Rust: Implementing high-level abstractions in a systems-level lan-
guage,” in Proceedings of the 18th International Workshop on High-Level Parallel
Programming Models and Supportive Environments, May 2013.

[7] J. Hemann and Eric Holk, “Visualizing the Turing tarpit,” in Proceedings of the First
ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design (FARM
’13), Boston, Massachusetts, USA: ACM, Sep. 2013.

[8] W. E. Byrd, Eric Holk, and D. P. Friedman, “Minikanren, live and untagged,” in
Workshop on Scheme and Functional Programming, Sep. 2012.

[9] Eric Holk, W. E. Byrd, J. Willcock, T. Hoeler, A. Chauhan, and A. Lumsdaine,
“Kanor – a declarative language for explicit communication,” Thirteenth Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL’11), Jan.
2011.

[10] Eric Holk, W. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and A. Lumsdaine,
“Declarative parallel programming for GPUs,” in Proceedings of the International
Conference on Parallel Computing (ParCo), Sep. 2011.

Patents
• Eric Holk, Rajneesh Mahajan, Frank D. Yerrace. “Redirection of Multiple Remote

Devices.” U.S. Patent Number 8,645,559. February 4, 2014.

Awards and Honors
Artifact Exceeds All Expectations Award Awarded by the OOPSLA 2014 artifact
evaluation committee for submitting an artifact accompanying [4] that was consistent with
the paper, complete, well documented and easy to reuse.

Funding
Mozilla Corporation $49,998. June 2013.

• Research gift awarded to support the development of high level GPU programming
languages with a focus on features that would it well with the Rust programming
language.

Professional Activities
• Program Committee Member for Scheme Workshop 2015

• Artifact Evaluation Committee Member for OOPSLA 2015

• Artifact Evaluation Committee Member from PLDI 2014

	Abstract
	Contents
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Parallel Computing Architectures
	2.2. General Purpose GPU Computing
	2.3. Region-based Memory Management

	Chapter 3. Related Work
	3.1. GPU Applications and Algorithms
	3.2. Data Parallelism
	3.3. GPU Programming Languages
	3.4. Regions
	3.5. Semantics

	Chapter 4. Exploring Regions with the Harlan Language
	4.1. A User's View of Harlan
	4.2. Region-based Memory Management in Harlan

	Chapter 5. Harlan Implementation
	5.1. Compilation
	5.2. Implementation of the Regions System
	5.3. Optimizations
	5.4. In-kernel Error Handling

	Chapter 6. Region Semantics for Multi-memory Systems
	6.1. Core Harlan
	6.2. Operational Semantics
	6.3. A Separation Logic Primer
	6.4. Type System
	6.5. Type Safety
	6.6. Auxiliary Lemmas
	6.7. Designing for Proof Mechanization

	Chapter 7. Harlan Case Studies
	7.1. Benchmarking Methodology
	7.2. Dense Matrix Multiplication
	7.3. Ray Tracing
	7.4. Graph Algorithms
	7.5. Integrating with external applications
	7.6. GPU Performance Characterization

	Chapter 8. Conclusion
	Bibliography

